Compare commits
17 Commits
features/l
...
0.11.1
Author | SHA1 | Date | |
---|---|---|---|
2e8cdd8da9 | |||
d0318536b2 | |||
765cf9d418 | |||
348c3d00b4 | |||
1c3f7f9ed8 | |||
e4ddaf2e8c | |||
73aade2bde | |||
af8590baa7 | |||
36bca1b70d | |||
09a693b696 | |||
f76bf86ef6 | |||
a60daf3ee2 | |||
fbfd993269 | |||
ba606c35a9 | |||
4183840ba0 | |||
7fb3eab5b6 | |||
175a51f968 |
@@ -1,6 +1,6 @@
|
||||
# autoBIGS.Engine
|
||||
|
||||
A python library implementing common BIGSdb MLST schemes and databases. Implementation follows the RESTful API outlined by the official [BIGSdb documentation](https://bigsdb.readthedocs.io/en/latest/rest.html) up to `V1.50.0`.
|
||||
A python library implementing common BIGSdb MLST schemes and databases accesses for the purpose of typing sequences automatically. Implementation follows the RESTful API outlined by the official [BIGSdb documentation](https://bigsdb.readthedocs.io/en/latest/rest.html) up to `V1.50.0`.
|
||||
|
||||
## Features
|
||||
|
||||
|
@@ -15,9 +15,9 @@ requires-python = ">=3.12"
|
||||
description = "A library to rapidly fetch fetch MLST profiles given sequences for various diseases."
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/RealYHD/autoBIGS.engine"
|
||||
Source = "https://github.com/RealYHD/autoBIGS.engine"
|
||||
Issues = "https://github.com/RealYHD/autoBIGS.engine/issues"
|
||||
Homepage = "https://github.com/Syph-and-VPD-Lab/autoBIGS.engine"
|
||||
Source = "https://github.com/Syph-and-VPD-Lab/autoBIGS.engine"
|
||||
Issues = "https://github.com/Syph-and-VPD-Lab/autoBIGS.engine/issues"
|
||||
|
||||
[tool.setuptools_scm]
|
||||
|
||||
|
@@ -1,70 +0,0 @@
|
||||
import asyncio
|
||||
from concurrent.futures import Future, ThreadPoolExecutor
|
||||
from contextlib import AbstractContextManager
|
||||
from typing import Any, Set, Union
|
||||
from Bio.Align import PairwiseAligner
|
||||
from queue import Queue
|
||||
|
||||
from autobigs.engine.structures.alignment import AlignmentStats, PairwiseAlignment
|
||||
|
||||
class AsyncBiopythonPairwiseAlignmentEngine(AbstractContextManager):
|
||||
def __enter__(self):
|
||||
self._thread_pool = ThreadPoolExecutor(self._max_threads, thread_name_prefix="async-pairwise-alignment")
|
||||
return self
|
||||
|
||||
def __init__(self, aligner: PairwiseAligner, max_threads: int = 4):
|
||||
self._max_threads = max_threads
|
||||
self._aligner = aligner
|
||||
self._work_left: Set[Future] = set()
|
||||
self._work_complete: Queue[Future] = Queue()
|
||||
|
||||
def align(self, reference: str, query: str, **associated_data):
|
||||
work = self._thread_pool.submit(
|
||||
self.work, reference, query, **associated_data)
|
||||
work.add_done_callback(self._on_complete)
|
||||
self._work_left.add(work)
|
||||
|
||||
def _on_complete(self, future: Future):
|
||||
self._work_left.remove(future)
|
||||
self._work_complete.put(future)
|
||||
|
||||
def work(self, reference, query, **associated_data):
|
||||
alignments = self._aligner.align(reference, query)
|
||||
top_alignment = alignments[0]
|
||||
top_alignment_stats = top_alignment.counts()
|
||||
top_alignment_gaps = top_alignment_stats.gaps
|
||||
top_alignment_identities = top_alignment_stats.identities
|
||||
top_alignment_mismatches = top_alignment_stats.mismatches
|
||||
top_alignment_score = top_alignment.score # type: ignore
|
||||
return PairwiseAlignment(
|
||||
top_alignment.sequences[0],
|
||||
top_alignment.sequences[1],
|
||||
tuple(top_alignment.indices[0]),
|
||||
tuple(top_alignment.indices[1]),
|
||||
AlignmentStats(
|
||||
percent_identity=top_alignment_identities/top_alignment.length,
|
||||
mismatches=top_alignment_mismatches,
|
||||
gaps=top_alignment_gaps,
|
||||
match_metric=top_alignment_score
|
||||
)), associated_data
|
||||
|
||||
async def next_completed(self) -> Union[tuple[PairwiseAlignment, dict[str, Any]], None]:
|
||||
if self._work_complete.empty() and len(self._work_left):
|
||||
return None
|
||||
completed_alignment = await asyncio.wrap_future(self._work_complete.get())
|
||||
return completed_alignment
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.shutdown()
|
||||
|
||||
def __aiter__(self):
|
||||
return self
|
||||
|
||||
async def __anext__(self):
|
||||
result = await self.next_completed()
|
||||
if result is None:
|
||||
raise StopAsyncIteration
|
||||
return result
|
||||
|
||||
def shutdown(self):
|
||||
self._thread_pool.shutdown(wait=True, cancel_futures=True)
|
@@ -11,7 +11,6 @@ from typing import Any, AsyncGenerator, AsyncIterable, Iterable, Mapping, Sequen
|
||||
|
||||
from aiohttp import ClientSession, ClientTimeout
|
||||
|
||||
from autobigs.engine.analysis.aligners import AsyncBiopythonPairwiseAlignmentEngine
|
||||
from autobigs.engine.reading import read_fasta
|
||||
from autobigs.engine.structures.alignment import PairwiseAlignment
|
||||
from autobigs.engine.structures.genomics import NamedString
|
||||
@@ -139,141 +138,6 @@ class RemoteBIGSdbMLSTProfiler(BIGSdbMLSTProfiler):
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.close()
|
||||
|
||||
class LocalBIGSdbMLSTProfiler(BIGSdbMLSTProfiler):
|
||||
async def __aenter__(self):
|
||||
if self._prepare:
|
||||
await self.update_scheme_locis()
|
||||
await asyncio.gather(
|
||||
self.download_alleles_cache_data(),
|
||||
self.download_scheme_profiles()
|
||||
)
|
||||
await self.load_scheme_profiles()
|
||||
return self
|
||||
|
||||
def __init__(self, database_api: str, database_name: str, schema_id: int, cache_path: Union[str, None] = None, prepare: bool =True):
|
||||
self._database_api = database_api
|
||||
self._database_name = database_name
|
||||
self._schema_id = schema_id
|
||||
self._base_url = f"{self._database_api}/db/{self._database_name}/schemes/{self._schema_id}/"
|
||||
self._http_client = ClientSession(self._base_url, timeout=ClientTimeout(60))
|
||||
if cache_path is None:
|
||||
self._cache_path = tempfile.mkdtemp("BIGSdb")
|
||||
self._cleanup_required = True
|
||||
else:
|
||||
self._cache_path = cache_path
|
||||
self._cleanup_required = False
|
||||
self._loci: list[str] = []
|
||||
self._profiles_st_map = {}
|
||||
self._prepare = prepare
|
||||
|
||||
async def update_scheme_locis(self):
|
||||
self._loci.clear()
|
||||
async with self._http_client.get(f"/api/db/{self._database_name}/schemes/{self._schema_id}") as schema_response:
|
||||
schema_json = await schema_response.json()
|
||||
for locus in schema_json["loci"]:
|
||||
locus_name = path.basename(locus)
|
||||
self._loci.append(locus_name)
|
||||
self._loci.sort()
|
||||
|
||||
async def load_scheme_profiles(self):
|
||||
self._profiles_st_map.clear()
|
||||
with open(self.get_scheme_profile_path()) as profile_cache_handle:
|
||||
reader = csv.DictReader(profile_cache_handle, delimiter="\t")
|
||||
for line in reader:
|
||||
alleles = []
|
||||
for locus in self._loci:
|
||||
alleles.append(line[locus])
|
||||
self._profiles_st_map[tuple(alleles)] = (line["ST"], line["clonal_complex"])
|
||||
|
||||
def get_locus_cache_path(self, locus) -> str:
|
||||
return path.join(self._cache_path, locus + "." + "fasta")
|
||||
|
||||
def get_scheme_profile_path(self):
|
||||
return path.join(self._cache_path, "profiles.csv")
|
||||
|
||||
async def download_alleles_cache_data(self):
|
||||
for locus in self._loci:
|
||||
with open(self.get_locus_cache_path(locus), "wb") as fasta_handle:
|
||||
async with self._http_client.get(f"/api/db/{self._database_name}/loci/{locus}/alleles_fasta") as fasta_response:
|
||||
async for chunk, eof in fasta_response.content.iter_chunks():
|
||||
fasta_handle.write(chunk)
|
||||
|
||||
async def download_scheme_profiles(self):
|
||||
with open(self.get_scheme_profile_path(), "wb") as profile_cache_handle:
|
||||
async with self._http_client.get("profiles_csv") as profiles_response:
|
||||
async for chunk, eof in profiles_response.content.iter_chunks():
|
||||
profile_cache_handle.write(chunk)
|
||||
await self.load_scheme_profiles()
|
||||
|
||||
async def determine_mlst_allele_variants(self, query_sequence_strings: Iterable[str]) -> AsyncGenerator[Allele, Any]:
|
||||
aligner = PairwiseAligner("blastn")
|
||||
aligner.mode = "local"
|
||||
with AsyncBiopythonPairwiseAlignmentEngine(aligner, max_threads=4) as aligner_engine:
|
||||
for query_sequence_string in query_sequence_strings:
|
||||
for locus in self._loci:
|
||||
async for allele_variant in read_fasta(self.get_locus_cache_path(locus)):
|
||||
aligner_engine.align(allele_variant.sequence, query_sequence_string, variant_name=allele_variant.name, full=True)
|
||||
break # start a bunch of full alignments for each variant to select segments
|
||||
alignment_rankings: dict[str, set[tuple[PairwiseAlignment, str]]] = defaultdict(set)
|
||||
async for alignment_result, additional_information in aligner_engine:
|
||||
result_variant_name = additional_information["variant_name"]
|
||||
result_locus, variant_id = result_variant_name.split("_")
|
||||
full_alignment = additional_information["full"]
|
||||
if full_alignment:
|
||||
if alignment_result.alignment_stats.gaps == 0 and alignment_result.alignment_stats.mismatches == 0:
|
||||
# I.e., 100% exactly the same
|
||||
yield Allele(result_locus, variant_id, None)
|
||||
continue
|
||||
else:
|
||||
alignment_rankings[result_locus].add((alignment_result, variant_id))
|
||||
interest_sequence = full_alignment[alignment_result.query_indices[0]:alignment_result.query_indices[-1]]
|
||||
async for allele_variant in read_fasta(self.get_locus_cache_path(result_locus)):
|
||||
if result_variant_name == allele_variant.name:
|
||||
continue # Skip if we just finished aligning this
|
||||
aligner_engine.align(allele_variant.sequence, interest_sequence, variant_name=result_variant_name.name, full=False)
|
||||
else:
|
||||
alignment_rankings[result_locus].add((alignment_result, variant_id))
|
||||
for final_locus, alignments in alignment_rankings.items():
|
||||
closest_alignment, closest_variant_id = sorted(alignments, key=lambda index: index[0].alignment_stats.match_metric)[0]
|
||||
yield Allele(final_locus, closest_variant_id, closest_alignment.alignment_stats)
|
||||
|
||||
async def determine_mlst_st(self, alleles):
|
||||
allele_variants: dict[str, Allele] = {}
|
||||
if isinstance(alleles, AsyncIterable):
|
||||
async for allele in alleles:
|
||||
allele_variants[allele.allele_locus] = allele
|
||||
else:
|
||||
for allele in alleles:
|
||||
allele_variants[allele.allele_locus] = allele
|
||||
ordered_profile = []
|
||||
for locus in self._loci:
|
||||
ordered_profile.append(allele_variants[locus].allele_variant)
|
||||
|
||||
st, clonal_complex = self._profiles_st_map[tuple(ordered_profile)]
|
||||
return MLSTProfile(set(allele_variants.values()), st, clonal_complex)
|
||||
|
||||
async def profile_string(self, query_sequence_strings: Iterable[str]) -> MLSTProfile:
|
||||
alleles = self.determine_mlst_allele_variants(query_sequence_strings)
|
||||
return await self.determine_mlst_st(alleles)
|
||||
|
||||
async def profile_multiple_strings(self, query_named_string_groups: AsyncIterable[Iterable[NamedString]], stop_on_fail: bool = False) -> AsyncGenerator[NamedMLSTProfile, Any]:
|
||||
async for named_strings in query_named_string_groups:
|
||||
for named_string in named_strings:
|
||||
try:
|
||||
yield NamedMLSTProfile(named_string.name, await self.profile_string([named_string.sequence]))
|
||||
except NoBIGSdbMatchesException as e:
|
||||
if stop_on_fail:
|
||||
raise e
|
||||
yield NamedMLSTProfile(named_string.name, None)
|
||||
|
||||
async def close(self):
|
||||
await self._http_client.close()
|
||||
if self._cleanup_required:
|
||||
shutil.rmtree(self._cache_path)
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.close()
|
||||
|
||||
class BIGSdbIndex(AbstractAsyncContextManager):
|
||||
KNOWN_BIGSDB_APIS = {
|
||||
"https://bigsdb.pasteur.fr/api",
|
||||
@@ -334,5 +198,5 @@ class BIGSdbIndex(AbstractAsyncContextManager):
|
||||
|
||||
def get_BIGSdb_MLST_profiler(local: bool, database_api: str, database_name: str, schema_id: int):
|
||||
if local:
|
||||
return LocalBIGSdbMLSTProfiler(database_api=database_api, database_name=database_name, schema_id=schema_id)
|
||||
raise NotImplementedError()
|
||||
return RemoteBIGSdbMLSTProfiler(database_api=database_api, database_name=database_name, schema_id=schema_id)
|
@@ -1,26 +0,0 @@
|
||||
import asyncio
|
||||
from contextlib import AbstractAsyncContextManager
|
||||
import tempfile
|
||||
from typing import Iterable, Union
|
||||
from Bio import Entrez
|
||||
from Bio import SeqIO
|
||||
|
||||
from autobigs.engine.structures.genomics import AnnotatedString, StringAnnotation
|
||||
|
||||
async def fetch_ncbi_genbank(genbank_id: str) -> AnnotatedString:
|
||||
with (await asyncio.to_thread(Entrez.efetch, db="nucleotide", id=genbank_id, rettype="gb", retmode="text")) as fetch_stream:
|
||||
record = SeqIO.read(fetch_stream, "genbank")
|
||||
sequence_features = list()
|
||||
for feature in record.features:
|
||||
start = int(feature.location.start)
|
||||
end = int(feature.location.end)
|
||||
qualifiers = feature.qualifiers
|
||||
for qualifier_key in qualifiers:
|
||||
qualifiers[qualifier_key] = set(qualifiers[qualifier_key])
|
||||
sequence_features.append(StringAnnotation(
|
||||
type=feature.type,
|
||||
start=start,
|
||||
end=end+1, # Position is exclusive
|
||||
feature_properties=qualifiers
|
||||
))
|
||||
return AnnotatedString(name=genbank_id, sequence=str(record.seq), annotations=sequence_features)
|
@@ -5,12 +5,13 @@ from Bio import SeqIO
|
||||
|
||||
from autobigs.engine.structures.genomics import NamedString
|
||||
|
||||
async def read_fasta(handle: Union[str, TextIOWrapper]) -> AsyncGenerator[NamedString, Any]:
|
||||
async def read_fasta(handle: Union[str, TextIOWrapper]) -> Iterable[NamedString]:
|
||||
fasta_sequences = asyncio.to_thread(SeqIO.parse, handle=handle, format="fasta")
|
||||
results = []
|
||||
for fasta_sequence in await fasta_sequences:
|
||||
yield NamedString(fasta_sequence.id, str(fasta_sequence.seq))
|
||||
results.append(NamedString(fasta_sequence.id, str(fasta_sequence.seq)))
|
||||
return results
|
||||
|
||||
async def read_multiple_fastas(handles: Iterable[Union[str, TextIOWrapper]]) -> AsyncGenerator[NamedString, Any]:
|
||||
async def read_multiple_fastas(handles: Iterable[Union[str, TextIOWrapper]]) -> AsyncGenerator[Iterable[NamedString], Any]:
|
||||
for handle in handles:
|
||||
async for named_seq in read_fasta(handle):
|
||||
yield named_seq
|
||||
yield await read_fasta(handle)
|
@@ -6,13 +6,15 @@ from typing import AsyncIterable, Collection, Mapping, Sequence, Union
|
||||
from autobigs.engine.structures.mlst import Allele, MLSTProfile
|
||||
|
||||
|
||||
def alleles_to_map(alleles: Collection[Allele]) -> Mapping[str, Union[list[str], str]]:
|
||||
def alleles_to_text_map(alleles: Collection[Allele]) -> Mapping[str, Union[Sequence[str], str]]:
|
||||
result = defaultdict(list)
|
||||
for allele in alleles:
|
||||
result[allele.allele_locus].append(allele.allele_variant)
|
||||
result[allele.allele_locus].append(allele.allele_variant + ("*" if allele.partial_match_profile is not None else ""))
|
||||
for locus in result.keys():
|
||||
if len(result[locus]) == 1:
|
||||
result[locus] = result[locus][0] # Take the only one
|
||||
else:
|
||||
result[locus] = tuple(result[locus]) # type: ignore
|
||||
return dict(result)
|
||||
|
||||
async def write_mlst_profiles_as_csv(mlst_profiles_iterable: AsyncIterable[tuple[str, Union[MLSTProfile, None]]], handle: Union[str, bytes, PathLike[str], PathLike[bytes]]) -> Sequence[str]:
|
||||
@@ -24,7 +26,7 @@ async def write_mlst_profiles_as_csv(mlst_profiles_iterable: AsyncIterable[tuple
|
||||
if mlst_profile is None:
|
||||
failed.append(name)
|
||||
continue
|
||||
allele_mapping = alleles_to_map(mlst_profile.alleles)
|
||||
allele_mapping = alleles_to_text_map(mlst_profile.alleles)
|
||||
if writer is None:
|
||||
header = ["id", "st", "clonal-complex", *sorted(allele_mapping.keys())]
|
||||
writer = csv.DictWriter(filehandle, fieldnames=header)
|
||||
|
@@ -1,42 +0,0 @@
|
||||
from Bio import SeqIO
|
||||
from Bio.Align import PairwiseAligner
|
||||
from pytest import mark
|
||||
from pytest import fixture
|
||||
from autobigs.engine.analysis.aligners import AsyncBiopythonPairwiseAlignmentEngine
|
||||
from autobigs.engine.structures.alignment import PairwiseAlignment
|
||||
|
||||
@fixture
|
||||
def tohamaI_bpertussis_adk():
|
||||
return str(SeqIO.read("tests/resources/tohama_I_bpertussis_adk.fasta", format="fasta").seq)
|
||||
|
||||
@fixture
|
||||
def tohamaI_bpertussis_genome():
|
||||
return str(SeqIO.read("tests/resources/tohama_I_bpertussis.fasta", format="fasta").seq)
|
||||
|
||||
@fixture
|
||||
def fdaargos_1560_hinfluenza_adk():
|
||||
return str(SeqIO.read("tests/resources/fdaargos_1560_hinfluenza_adk.fasta", format="fasta").seq)
|
||||
|
||||
@fixture
|
||||
def fdaargos_1560_hinfluenza_genome():
|
||||
return str(SeqIO.read("tests/resources/fdaargos_1560_hinfluenza.fasta", format="fasta").seq)
|
||||
|
||||
|
||||
@fixture(params=[1, 2])
|
||||
def dummy_engine(request):
|
||||
aligner = PairwiseAligner("blastn")
|
||||
aligner.mode = "local"
|
||||
with AsyncBiopythonPairwiseAlignmentEngine(aligner, request.param) as engine:
|
||||
yield engine
|
||||
|
||||
class TestAsyncPairwiseAlignmentEngine:
|
||||
async def test_single_alignment_no_errors_single_alignment(self, tohamaI_bpertussis_genome, tohamaI_bpertussis_adk: str, dummy_engine: AsyncBiopythonPairwiseAlignmentEngine):
|
||||
dummy_engine.align(tohamaI_bpertussis_genome, tohamaI_bpertussis_adk)
|
||||
async for alignment, additional_information in dummy_engine:
|
||||
assert isinstance(alignment, PairwiseAlignment)
|
||||
|
||||
async def test_single_alignment_no_errors_multiple(self, tohamaI_bpertussis_genome, tohamaI_bpertussis_adk, fdaargos_1560_hinfluenza_genome, fdaargos_1560_hinfluenza_adk, dummy_engine: AsyncBiopythonPairwiseAlignmentEngine):
|
||||
dummy_engine.align(tohamaI_bpertussis_genome, tohamaI_bpertussis_adk)
|
||||
dummy_engine.align(fdaargos_1560_hinfluenza_genome, fdaargos_1560_hinfluenza_adk)
|
||||
async for alignment, additional_information in dummy_engine:
|
||||
assert isinstance(alignment, PairwiseAlignment)
|
@@ -9,7 +9,7 @@ from autobigs.engine.structures import mlst
|
||||
from autobigs.engine.structures.genomics import NamedString
|
||||
from autobigs.engine.structures.mlst import Allele, MLSTProfile
|
||||
from autobigs.engine.exceptions.database import NoBIGSdbExactMatchesException, NoBIGSdbMatchesException
|
||||
from autobigs.engine.analysis.bigsdb import BIGSdbIndex, BIGSdbMLSTProfiler, LocalBIGSdbMLSTProfiler, RemoteBIGSdbMLSTProfiler
|
||||
from autobigs.engine.analysis.bigsdb import BIGSdbIndex, BIGSdbMLSTProfiler, RemoteBIGSdbMLSTProfiler
|
||||
|
||||
async def generate_async_iterable(normal_iterable):
|
||||
for dummy_sequence in normal_iterable:
|
||||
@@ -50,33 +50,30 @@ bpertussis_tohamaI_bad_profile = MLSTProfile((
|
||||
Allele("pgm", "5", None),
|
||||
), "unknown", "unknown")
|
||||
|
||||
hinfluenzae_fdaargos_profile = MLSTProfile((
|
||||
Allele("adk", "1", None),
|
||||
Allele("atpG", "1", None),
|
||||
Allele("frdB", "1", None),
|
||||
Allele("fucK", "1", None),
|
||||
Allele("mdh", "1", None),
|
||||
Allele("pgi", "1", None),
|
||||
hinfluenzae_2014_102_profile = MLSTProfile((
|
||||
Allele("adk", "28", None),
|
||||
Allele("atpG", "33", None),
|
||||
Allele("frdB", "7", None),
|
||||
Allele("fucK", "18", None),
|
||||
Allele("mdh", "11", None),
|
||||
Allele("pgi", "125", None),
|
||||
Allele("recA", "89", None)
|
||||
), "478", "unknown")
|
||||
|
||||
hinfluenzae_2014_102_bad_profile = MLSTProfile((
|
||||
Allele("adk", "3", None),
|
||||
Allele("atpG", "121", None),
|
||||
Allele("frdB", "6", None),
|
||||
Allele("fucK", "5", None),
|
||||
Allele("mdh", "12", None),
|
||||
Allele("pgi", "4", None),
|
||||
Allele("recA", "5", None)
|
||||
), "3", "ST-3 complex")
|
||||
), "unknown", "unknown")
|
||||
|
||||
hinfluenzae_fdaargos_bad_profile = MLSTProfile((
|
||||
Allele("adk", "1", None),
|
||||
Allele("atpG", "1", None),
|
||||
Allele("frdB", "1", None),
|
||||
Allele("fucK", "1", None),
|
||||
Allele("mdh", "1", None),
|
||||
Allele("pgi", "1", None),
|
||||
Allele("recA", "5", None)
|
||||
), "3", "ST-3 complex")
|
||||
|
||||
hinfluenzae_fdaargos_sequence = str(SeqIO.read("tests/resources/fdaargos_1560_hinfluenza.fasta", "fasta").seq)
|
||||
|
||||
hinfluenzae_fdaargos_fragmented_sequence = tuple(SeqIO.parse("tests/resources/tohama_I_bpertussis_features.fasta", "fasta"))
|
||||
|
||||
@pytest.mark.parametrize("local_db,database_api,database_name,schema_id,seq_path,feature_seqs_path,expected_profile,bad_profile", [
|
||||
(False, "https://bigsdb.pasteur.fr/api", "pubmlst_bordetella_seqdef", 3, "tohama_I_bpertussis.fasta", "tohama_I_bpertussis_features.fasta", bpertussis_tohamaI_profile, bpertussis_tohamaI_bad_profile),
|
||||
(True, "https://bigsdb.pasteur.fr/api", "pubmlst_bordetella_seqdef", 3, "tohama_I_bpertussis.fasta", "tohama_I_bpertussis_features.fasta", bpertussis_tohamaI_profile, bpertussis_tohamaI_bad_profile),
|
||||
(False, "https://rest.pubmlst.org", "pubmlst_hinfluenzae_seqdef", 1, "2014-102_hinfluenza.fasta", "2014-102_hinfluenza_features.fasta", hinfluenzae_2014_102_profile, hinfluenzae_2014_102_bad_profile),
|
||||
])
|
||||
class TestBIGSdbMLSTProfiler:
|
||||
async def test_profiling_results_in_exact_matches_when_exact(self, local_db, database_api, database_name, schema_id, seq_path: str, feature_seqs_path: str, expected_profile: MLSTProfile, bad_profile: MLSTProfile):
|
||||
@@ -202,7 +199,6 @@ class TestBIGSdbIndex:
|
||||
assert databases["pubmlst_bordetella_seqdef"] == "https://bigsdb.pasteur.fr/api"
|
||||
|
||||
@pytest.mark.parametrize("local", [
|
||||
(True),
|
||||
(False)
|
||||
])
|
||||
async def test_bigsdb_index_instantiates_correct_profiler(self, local):
|
||||
|
@@ -2,6 +2,6 @@ from autobigs.engine.reading import read_fasta
|
||||
|
||||
|
||||
async def test_fasta_reader_not_none():
|
||||
named_strings = read_fasta("tests/resources/tohama_I_bpertussis.fasta")
|
||||
async for named_string in named_strings:
|
||||
named_strings = await read_fasta("tests/resources/tohama_I_bpertussis.fasta")
|
||||
for named_string in named_strings:
|
||||
assert named_string.name == "BX470248.1"
|
||||
|
@@ -0,0 +1,47 @@
|
||||
from typing import AsyncIterable, Iterable
|
||||
|
||||
import pytest
|
||||
from autobigs.engine.structures.alignment import AlignmentStats
|
||||
from autobigs.engine.writing import alleles_to_text_map, write_mlst_profiles_as_csv
|
||||
from autobigs.engine.structures.mlst import Allele, MLSTProfile
|
||||
import tempfile
|
||||
from csv import reader
|
||||
from os import path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dummy_alphabet_mlst_profile():
|
||||
return MLSTProfile((
|
||||
Allele("A", "1", None),
|
||||
Allele("D", "1", None),
|
||||
Allele("B", "1", None),
|
||||
Allele("C", "1", None),
|
||||
Allele("C", "2", AlignmentStats(90, 10, 0, 90))
|
||||
), "mysterious", "very mysterious")
|
||||
|
||||
async def iterable_to_asynciterable(iterable: Iterable):
|
||||
for iterated in iterable:
|
||||
yield iterated
|
||||
|
||||
async def test_column_order_is_same_as_expected_file(dummy_alphabet_mlst_profile: MLSTProfile):
|
||||
dummy_profiles = [("test_1", dummy_alphabet_mlst_profile)]
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
output_path = path.join(temp_dir, "out.csv")
|
||||
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path)
|
||||
with open(output_path) as csv_handle:
|
||||
csv_reader = reader(csv_handle)
|
||||
lines = list(csv_reader)
|
||||
target_columns = lines[4:]
|
||||
assert target_columns == sorted(target_columns)
|
||||
|
||||
async def test_alleles_to_text_map_mapping_is_correct(dummy_alphabet_mlst_profile: MLSTProfile):
|
||||
mapping = alleles_to_text_map(dummy_alphabet_mlst_profile.alleles)
|
||||
expected_mapping = {
|
||||
"A": "1",
|
||||
"B": "1",
|
||||
"C": ("1", "2*"),
|
||||
"D": "1"
|
||||
}
|
||||
for allele_name, allele_ids in mapping.items():
|
||||
assert allele_name in expected_mapping
|
||||
assert allele_ids == expected_mapping[allele_name]
|
28244
tests/resources/2014-102_hinfluenza.fasta
Normal file
28244
tests/resources/2014-102_hinfluenza.fasta
Normal file
File diff suppressed because it is too large
Load Diff
27751
tests/resources/2014-102_hinfluenza_features.fasta
Normal file
27751
tests/resources/2014-102_hinfluenza_features.fasta
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,11 +0,0 @@
|
||||
>lcl|CP085952.1_gene_371 [gene=adk] [locus_tag=LK401_01855] [location=complement(365128..365772)] [gbkey=Gene]
|
||||
ATGAAAATTATTCTTTTAGGTGCACCGGGTGCAGGTAAAGGCACTCAAGCACAATTTATTATGAACAAAT
|
||||
TTGGTATCCCGCAAATTTCAACTGGTGATATGTTCCGTGCTGCAATCAAAGCGGGGACTGAACTTGGCAA
|
||||
ACAAGCTAAAGCATTAATGGATGAAGGTAAATTAGTGCCAGATGAATTAACCGTTGCCCTTGTAAAAGAT
|
||||
CGTATTGCTCAAGCTGACTGCACAAATGGTTTCTTGTTAGATGGTTTCCCTCGTACTATTCCACAAGCGG
|
||||
ATGCACTGAAAGATTCAGGTGTTAAAATTGACTTTGTTTTAGAATTTGATGTGCCAGACGAAGTGATTGT
|
||||
TGAACGTATGAGTGGCCGTCGCGTACACCAAGCGTCTGGCCGTTCTTACCACATCGTTTATAATCCACCA
|
||||
AAAGTGGAAGGTAAAGATGATGTAACAGGCGAAGATTTAATTATTCGTGCAGACGATAAACCAGAAACTG
|
||||
TATTAGATCGTTTAGCCGTATATCATAAACAAACTAGCCCATTAATTGATTATTACCAAGCAGAAGCGAA
|
||||
AGCGGGGAATACTCAATATTTCCGTTTAGACGGTACACAAAAAGTAGAAGAAGTTAGCCAAGAGTTAGAT
|
||||
AAAATCTTAGGCTAA
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user