Genetic code unit and data
This commit is contained in:
parent
131ec842e4
commit
8462b7d336
298
FND-Genetic_code.R
Normal file
298
FND-Genetic_code.R
Normal file
@ -0,0 +1,298 @@
|
||||
# FND-Genetic_code.R
|
||||
#
|
||||
# Purpose: A Bioinformatics Course:
|
||||
# R code accompanying the FND-Genetic_code unit.
|
||||
#
|
||||
# Version: 1.0
|
||||
#
|
||||
# Date: 2017 09 28
|
||||
# Author: Boris Steipe (boris.steipe@utoronto.ca)
|
||||
#
|
||||
# Versions:
|
||||
# 1.0 First live version
|
||||
#
|
||||
#
|
||||
# TODO:
|
||||
#
|
||||
#
|
||||
# == DO NOT SIMPLY source() THIS FILE! =======================================
|
||||
#
|
||||
# If there are portions you don't understand, use R's help system, Google for an
|
||||
# answer, or ask your instructor. Don't continue if you don't understand what's
|
||||
# going on. That's not how it works ...
|
||||
#
|
||||
# ==============================================================================
|
||||
|
||||
#TOC> ==========================================================================
|
||||
#TOC>
|
||||
#TOC> Section Title Line
|
||||
#TOC> ----------------------------------------------------------
|
||||
#TOC> 1 Storing the genetic code 41
|
||||
#TOC> 1.1 Genetic code in Biostrings 59
|
||||
#TOC> 2 Working with the genetic code 86
|
||||
#TOC> 2.1 Translate a sequence. 115
|
||||
#TOC> 3 An alternative representation: 3D array 176
|
||||
#TOC> 3.1 Print a Genetic code table 209
|
||||
#TOC> 4 Tasks 235
|
||||
#TOC>
|
||||
#TOC> ==========================================================================
|
||||
|
||||
|
||||
# = 1 Storing the genetic code ============================================
|
||||
|
||||
# The genetic code maps trinucleotide codons to amino acids. To store it, we
|
||||
# need some mechanism to associate these two informattion items. The most
|
||||
# convenient way to do that is a "named vector" which holds the maino acid
|
||||
# code and assigns the codons as names to its elements.
|
||||
|
||||
x <- c("M", "*")
|
||||
names(x) <- c("ATG", "TAA")
|
||||
x
|
||||
|
||||
# Then we can access the vector by the codon as name, and retrieve the
|
||||
# amino acid.
|
||||
|
||||
x["ATG"]
|
||||
x["TAA"]
|
||||
|
||||
|
||||
# == 1.1 Genetic code in Biostrings ========================================
|
||||
|
||||
# Coveniently, the standard genetic code as well as its alternatives are
|
||||
# available in the Bioconductor "Biostrings" package:
|
||||
|
||||
|
||||
if (! require(Biostrings)) {
|
||||
if (! exists("biocLite")) {
|
||||
source("https://bioconductor.org/biocLite.R")
|
||||
}
|
||||
biocLite("Biostrings")
|
||||
library(Biostrings)
|
||||
}
|
||||
|
||||
# The standard genetic code vector
|
||||
GENETIC_CODE
|
||||
|
||||
# The table of genetic codes. This information corresponds to this page
|
||||
# at the NCBI:
|
||||
# https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes
|
||||
GENETIC_CODE_TABLE
|
||||
|
||||
# Most of the alternative codes are mitochondrial codes. The id of the
|
||||
# Alternative Yeast Nuclear code is "12"
|
||||
getGeneticCode("12") # Alternative Yeast Nuclear
|
||||
|
||||
|
||||
# = 2 Working with the genetic code =======================================
|
||||
|
||||
# GENETIC_CODE is a "named vector"
|
||||
|
||||
str(GENETIC_CODE)
|
||||
|
||||
# ... which also stores the alternative initiation codons TTG and CTG in
|
||||
# an attribute of the vector. (Alternative initiation codons sometimes are
|
||||
# used instead of ATG to intiate translation, if if not ATG they are translated
|
||||
# with fMet.)
|
||||
|
||||
attr(GENETIC_CODE, "alt_init_codons")
|
||||
|
||||
# But the key to use this vector is in the "names" which we use for subsetting
|
||||
# the list of amino acids in whatever way we need.
|
||||
names(GENETIC_CODE)
|
||||
|
||||
# The translation of "TGG" ...
|
||||
GENETIC_CODE["TGG"]
|
||||
|
||||
# All stop codons
|
||||
names(GENETIC_CODE)[GENETIC_CODE == "*"]
|
||||
|
||||
# All start codons
|
||||
names(GENETIC_CODE)[GENETIC_CODE == "M"] # ... or
|
||||
c(names(GENETIC_CODE)[GENETIC_CODE == "M"],
|
||||
attr(GENETIC_CODE, "alt_init_codons"))
|
||||
|
||||
|
||||
# == 2.1 Translate a sequence. =============================================
|
||||
|
||||
|
||||
# I have provided a gene sequence in the data directory:
|
||||
# S288C_YDL056W_MBP1_coding.fsa is the yeast Mbp1 FASTA sequence.
|
||||
|
||||
# read it
|
||||
mbp1 <- readLines("./data/S288C_YDL056W_MBP1_coding.fsa")
|
||||
|
||||
head(mbp1)
|
||||
|
||||
# drop the first line (header)
|
||||
mbp1 <- mbp1[-1]
|
||||
head(mbp1)
|
||||
|
||||
# concatenate it all to a single string
|
||||
mbp1 <- paste(mbp1, sep = "", collapse = "")
|
||||
|
||||
# how long ist it?
|
||||
nchar(mbp1)
|
||||
|
||||
# how many codons?
|
||||
nchar(mbp1)/3
|
||||
|
||||
# That looks correct for the 833 aa sequence plus 1 stop codon.
|
||||
|
||||
# Extract the codons. There are many ways to split a long string into chunks
|
||||
# of three characters. Here we use Biostrings codons() function. codons()
|
||||
# requires an object of type DNAstring - a special kind of string with
|
||||
# attributes that are useful for Biostrings. Thus we convert the sequence first
|
||||
# with DNAstring(), then split it up, then convert it into a plain
|
||||
# character vector.
|
||||
mbp1Codons <- as.character(codons(DNAString(mbp1)))
|
||||
|
||||
head(mbp1Codons)
|
||||
|
||||
# now translate each codon
|
||||
|
||||
mbp1AA <- character(834)
|
||||
for (i in seq_along(mbp1Codons)) {
|
||||
mbp1AA[i] <- GENETIC_CODE[mbp1Codons[i]]
|
||||
}
|
||||
|
||||
head(mbp1AA)
|
||||
tail(mbp1AA) # Note the stop!
|
||||
|
||||
# We can work with this vector, for example if we want to tabulate the amino
|
||||
# acid frequencies:
|
||||
table(mbp1AA)
|
||||
sort(table(mbp1AA), decreasing = TRUE)
|
||||
|
||||
# Or we can paste all elements together into a single string. But let's remove
|
||||
# the stop, it's not actually a part of the sequence. To remove the last element
|
||||
# of a vector, re-assign it with a vector minus the index of the last element:
|
||||
mbp1AA <- mbp1AA[-(length(mbp1AA))]
|
||||
tail(mbp1AA) # Note the stop is gone!
|
||||
|
||||
# paste it together, collapsing the elements without separation-character
|
||||
(Mbp1 <- paste(mbp1AA, sep = "", collapse = ""))
|
||||
|
||||
|
||||
# = 3 An alternative representation: 3D array =============================
|
||||
|
||||
|
||||
# We don't use 3D arrays often - usually just 2D tables and data frames, so
|
||||
# here is a good opportunity to review the syntax with a genetic code cube:
|
||||
|
||||
# Initialize, using A C G T as the names of the elements in each dimension
|
||||
cCube <- array(data = character(64),
|
||||
dim = c(4, 4, 4),
|
||||
dimnames = list(c("A", "C", "G", "T"),
|
||||
c("A", "C", "G", "T"),
|
||||
c("A", "C", "G", "T")))
|
||||
|
||||
# fill it with amino acid codes using three nested loops
|
||||
for (i in 1:4) {
|
||||
for (j in 1:4) {
|
||||
for (k in 1:4) {
|
||||
myCodon <- paste(dimnames(cCube)[[1]][i],
|
||||
dimnames(cCube)[[2]][j],
|
||||
dimnames(cCube)[[3]][k],
|
||||
sep = "",
|
||||
collapse = "")
|
||||
cCube[i, j, k] <- GENETIC_CODE[myCodon]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# confirm
|
||||
cCube["A", "T", "G"] # methionine
|
||||
cCube["T", "T", "T"] # phenylalanine
|
||||
cCube["T", "A", "G"] # stop (amber)
|
||||
|
||||
|
||||
# == 3.1 Print a Genetic code table ========================================
|
||||
|
||||
|
||||
# The data structure of our cCube is well suited to print a table. In the
|
||||
# "standard" way to print the genetic code, we write codons with the same
|
||||
# second nucleotide in columns, and arrange rows in blocks of same
|
||||
# first nucleotide, varying the third nucleotide fastest. This maximizes the
|
||||
# similarity of adjacent amino acids in the table if we print the
|
||||
# nucleotides in the order T C A G. It's immidiately obvious that the code
|
||||
# is not random: the universal genetic code is exceptionally error tolerant in
|
||||
# the sense that mutations (or single-nucleotide translation errors) are likely
|
||||
# to result in an amino acid with similar biophysical properties as the
|
||||
# original.
|
||||
|
||||
nuc <- c("T", "C", "A", "G")
|
||||
|
||||
for (i in nuc) {
|
||||
for (k in nuc) {
|
||||
for (j in nuc) {
|
||||
cat(sprintf("%s%s%s: %s ", i, j, k, cCube[i, j, k]))
|
||||
}
|
||||
cat("\n")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# = 4 Tasks ===============================================================
|
||||
|
||||
|
||||
# Task: What do you need to change to print the table with U instead
|
||||
# of T? Try it.
|
||||
|
||||
|
||||
# Task: Point mutations are more often transitions (purine -> purine;
|
||||
# pyrimidine -> pyrimidine) than transversions (purine -> pyrimidine;
|
||||
# pyrimidine -> purine), even though twice as many transversions
|
||||
# are possible in the code. This is most likely due a deamination /
|
||||
# tautomerization process that favours C -> T changes. If the code
|
||||
# indeed minimizes the effect of mutations, you would expect that
|
||||
# codons that differ by a transition code for more similar amino acids
|
||||
# than codons that differ by a transversion. Is that true? List the set
|
||||
# of all amino acid pairs that are encoded by codons with a C -> T
|
||||
# transition. Then list the set of amino acid pairs with a C -> A
|
||||
# transversion. Which set of pairs is more similar?
|
||||
|
||||
|
||||
# Task: How many stop codons do the two mbp1-gene derived amino acid sequences
|
||||
# have if you translate them in the 2. or the 3. frame?
|
||||
|
||||
|
||||
# Task: How does the amino acid composition change if you translate the mbp1
|
||||
# gene with the Alternative Yeast Nuclear code that is used by the
|
||||
# "GTC clade" of fungi?
|
||||
# (cf. https://en.wikipedia.org/wiki/Alternative_yeast_nuclear_code )
|
||||
|
||||
# Solution:
|
||||
|
||||
# Fetch the code
|
||||
GENETIC_CODE_TABLE
|
||||
GENETIC_CODE_TABLE$name[GENETIC_CODE_TABLE$id == "12"]
|
||||
altYcode <- getGeneticCode("12")
|
||||
|
||||
# what's the difference?
|
||||
(delta <- which(GENETIC_CODE != altYcode))
|
||||
|
||||
GENETIC_CODE[delta]
|
||||
altYcode[delta]
|
||||
|
||||
# translate
|
||||
altYAA <- character(834)
|
||||
for (i in seq_along(mbp1Codons)) {
|
||||
altYAA[i] <- altYcode[mbp1Codons[i]]
|
||||
}
|
||||
|
||||
table(mbp1AA)
|
||||
table(altYAA)
|
||||
|
||||
# Task: The genetic code has significant redundacy, i.e. there are up to six
|
||||
# codons that code for the same amino acid. Write code that lists how
|
||||
# many amino acids are present how often i.e. it should tell you that
|
||||
# two amino acids are encoded only with a single codon, three amino
|
||||
# acids have six codons, etc. Solution below, but don't peek. There
|
||||
# are many possible ways to do this.
|
||||
#
|
||||
#
|
||||
# Solution:
|
||||
table(table(GENETIC_CODE))
|
||||
|
||||
|
||||
# [END]
|
43
data/S288C_YDL056W_MBP1_coding.fsa
Normal file
43
data/S288C_YDL056W_MBP1_coding.fsa
Normal file
@ -0,0 +1,43 @@
|
||||
>MBP1 YDL056W SGDID:S000002214
|
||||
ATGTCTAACCAAATATACTCAGCGAGATATTCGGGGGTTGATGTTTATGAATTCATTCAT
|
||||
TCTACAGGATCTATCATGAAAAGGAAAAAGGATGATTGGGTCAATGCTACACATATTTTA
|
||||
AAGGCCGCCAATTTTGCCAAGGCTAAAAGAACAAGGATTCTAGAGAAGGAAGTACTTAAG
|
||||
GAAACTCATGAAAAAGTTCAGGGTGGATTTGGTAAATATCAGGGTACATGGGTCCCACTG
|
||||
AACATAGCGAAACAACTGGCAGAAAAATTTAGTGTCTACGATCAGCTGAAACCGTTGTTC
|
||||
GACTTTACGCAAACAGATGGGTCTGCTTCTCCACCTCCTGCTCCAAAACATCACCATGCC
|
||||
TCGAAGGTGGATAGGAAAAAGGCTATTAGAAGTGCAAGTACTTCCGCAATTATGGAAACA
|
||||
AAAAGAAACAACAAGAAAGCCGAGGAAAATCAATTTCAAAGCAGCAAAATATTGGGAAAT
|
||||
CCCACGGCTGCACCAAGGAAAAGAGGTAGACCGGTAGGATCTACGAGGGGAAGTAGGCGG
|
||||
AAGTTAGGTGTCAATTTACAACGTTCTCAAAGTGATATGGGATTTCCTAGACCGGCGATA
|
||||
CCGAATTCTTCAATATCGACAACGCAACTTCCCTCTATTAGATCCACCATGGGACCACAA
|
||||
TCCCCTACATTGGGTATTCTGGAAGAAGAAAGGCACGATTCTCGACAGCAGCAGCCGCAA
|
||||
CAAAATAATTCTGCACAGTTCAAAGAAATTGATCTTGAGGACGGCTTATCAAGCGATGTG
|
||||
GAACCTTCACAACAATTACAACAAGTTTTTAATCAAAATACTGGATTTGTACCCCAACAA
|
||||
CAATCTTCCTTGATACAGACACAGCAAACAGAATCAATGGCCACGTCCGTATCTTCCTCT
|
||||
CCTTCATTACCTACGTCACCGGGCGATTTTGCCGATAGTAATCCATTTGAAGAGCGATTT
|
||||
CCCGGTGGTGGAACATCTCCTATTATTTCCATGATCCCGCGTTATCCTGTAACTTCAAGG
|
||||
CCTCAAACATCGGATATTAATGATAAAGTTAACAAATACCTTTCAAAATTGGTTGATTAT
|
||||
TTTATTTCCAATGAAATGAAGTCAAATAAGTCCCTACCACAAGTGTTATTGCACCCACCT
|
||||
CCACACAGCGCTCCCTATATAGATGCTCCAATCGATCCAGAATTACATACTGCCTTCCAT
|
||||
TGGGCTTGTTCTATGGGTAATTTACCAATTGCTGAGGCGTTGTACGAAGCCGGAACAAGT
|
||||
ATCAGATCGACAAATTCTCAAGGCCAAACTCCATTGATGAGAAGTTCCTTATTCCACAAT
|
||||
TCATACACTAGAAGAACTTTCCCTAGAATTTTCCAGCTACTGCACGAGACCGTATTTGAT
|
||||
ATCGATTCGCAATCACAAACAGTAATTCACCATATTGTGAAACGAAAATCAACAACACCT
|
||||
TCTGCAGTTTATTATCTTGATGTTGTGCTATCTAAGATCAAGGATTTTTCCCCACAGTAT
|
||||
AGAATTGAATTACTTTTAAACACACAAGACAAAAATGGCGATACCGCACTTCATATTGCT
|
||||
TCTAAAAATGGAGATGTTGTTTTTTTTAATACACTGGTCAAAATGGGTGCATTAACTACT
|
||||
ATTTCCAATAAGGAAGGATTAACCGCCAATGAAATAATGAATCAACAATATGAGCAAATG
|
||||
ATGATACAAAATGGTACAAATCAACATGTCAATTCTTCAAACACGGACTTGAATATCCAC
|
||||
GTTAATACAAACAACATTGAAACGAAAAATGATGTTAATTCAATGGTAATCATGTCGCCT
|
||||
GTTTCTCCTTCGGATTACATAACCTATCCATCTCAAATTGCCACCAATATATCAAGAAAT
|
||||
ATTCCAAATGTAGTGAATTCTATGAAGCAAATGGCTAGCATATACAACGATCTTCATGAA
|
||||
CAGCATGACAACGAAATAAAAAGTTTGCAAAAAACTTTAAAAAGCATTTCTAAGACGAAA
|
||||
ATACAGGTAAGCCTAAAAACTTTAGAGGTATTGAAAGAGAGCAGTAAAGATGAAAACGGC
|
||||
GAAGCTCAGACTAATGATGACTTCGAAATTTTATCTCGTCTACAAGAACAAAATACTAAG
|
||||
AAATTGAGAAAAAGGCTCATACGATACAAACGGTTGATAAAACAAAAGCTGGAATACAGG
|
||||
CAAACGGTTTTATTGAACAAATTAATAGAAGATGAAACTCAGGCTACCACCAATAACACA
|
||||
GTTGAGAAAGATAATAATACGCTGGAAAGGTTGGAATTGGCTCAAGAACTAACGATGTTG
|
||||
CAATTACAAAGGAAAAACAAATTGAGTTCCTTGGTGAAGAAATTTGAAGACAATGCCAAG
|
||||
ATTCATAAATATAGACGGATTATCAGGGAAGGTACGGAAATGAATATTGAAGAAGTAGAT
|
||||
AGTTCGCTGGATGTAATACTACAGACATTGATAGCCAACAATAATAAAAATAAGGGCGCA
|
||||
GAACAGATCATCACAATCTCAAACGCGAATAGTCATGCATAA
|
Loading…
Reference in New Issue
Block a user