Maintenance
This commit is contained in:
parent
f90f581963
commit
4c0e75d792
@ -1,20 +1,16 @@
|
||||
# tocID <- "FND-STA-Probability_distribution.R"
|
||||
#
|
||||
# ---------------------------------------------------------------------------- #
|
||||
# PATIENCE ... #
|
||||
# Do not yet work wih this code. Updates in progress. Thank you. #
|
||||
# boris.steipe@utoronto.ca #
|
||||
# ---------------------------------------------------------------------------- #
|
||||
#
|
||||
# Purpose: A Bioinformatics Course:
|
||||
# R code accompanying the FND-STA-Probability_distribution unit.
|
||||
#
|
||||
# Version: 1.3
|
||||
# Version: 1.4
|
||||
#
|
||||
# Date: 2017 10 - 2019 01
|
||||
# Date: 2017-10 - 2020-09
|
||||
# Author: Boris Steipe (boris.steipe@utoronto.ca)
|
||||
#
|
||||
# Versions:
|
||||
# 1.4 2020 Maintenance
|
||||
# 1.3 Change from require() to requireNamespace(),
|
||||
# use <package>::<function>() idiom throughout,
|
||||
# 1.2 Update set.seed() usage
|
||||
@ -34,24 +30,24 @@
|
||||
|
||||
|
||||
#TOC> ==========================================================================
|
||||
#TOC>
|
||||
#TOC>
|
||||
#TOC> Section Title Line
|
||||
#TOC> -----------------------------------------------------------------------------
|
||||
#TOC> 1 Introduction 52
|
||||
#TOC> 2 Three fundamental distributions 115
|
||||
#TOC> 2.1 The Poisson Distribution 118
|
||||
#TOC> 2.2 The uniform distribution 172
|
||||
#TOC> 2.3 The Normal Distribution 192
|
||||
#TOC> 3 quantile-quantile comparison 233
|
||||
#TOC> 3.1 qqnorm() 243
|
||||
#TOC> 3.2 qqplot() 309
|
||||
#TOC> 4 Quantifying the difference 326
|
||||
#TOC> 4.1 Chi2 test for discrete distributions 361
|
||||
#TOC> 4.2 Kullback-Leibler divergence 452
|
||||
#TOC> 4.2.1 An example from tossing dice 463
|
||||
#TOC> 4.2.2 An example from lognormal distributions 586
|
||||
#TOC> 4.3 Kolmogorov-Smirnov test for continuous distributions 629
|
||||
#TOC>
|
||||
#TOC> 1 Introduction 54
|
||||
#TOC> 2 Three fundamental distributions 117
|
||||
#TOC> 2.1 The Poisson Distribution 120
|
||||
#TOC> 2.2 The uniform distribution 174
|
||||
#TOC> 2.3 The Normal Distribution 194
|
||||
#TOC> 3 quantile-quantile comparison 235
|
||||
#TOC> 3.1 qqnorm() 245
|
||||
#TOC> 3.2 qqplot() 311
|
||||
#TOC> 4 Quantifying the difference 328
|
||||
#TOC> 4.1 Chi2 test for discrete distributions 363
|
||||
#TOC> 4.2 Kullback-Leibler divergence 454
|
||||
#TOC> 4.2.1 An example from tossing dice 465
|
||||
#TOC> 4.2.2 An example from lognormal distributions 588
|
||||
#TOC> 4.3 Kolmogorov-Smirnov test for continuous distributions 631
|
||||
#TOC>
|
||||
#TOC> ==========================================================================
|
||||
|
||||
|
||||
@ -167,10 +163,10 @@ set.seed(NULL)
|
||||
# Add these values to the plot
|
||||
y <- numeric(26) # initialize vector with 26 slots
|
||||
y[as.numeric(names(t)) + 1] <- t # put the tabled values there (index + 1)
|
||||
points(midPoints, y, pch = 21, cex = 0.7, bg = "firebrick")
|
||||
points(midPoints - 0.55, y, type = "s", col = "firebrick")
|
||||
legend("topright",
|
||||
legend = c("poisson distribution", "samples"),
|
||||
pch = c(22, 21),
|
||||
legend = c("theoretical", "simulated"),
|
||||
pch = c(22, 22),
|
||||
pt.bg = c("#E6FFF6", "firebrick"),
|
||||
bty = "n")
|
||||
|
||||
@ -230,7 +226,7 @@ for (i in 1:length(v)) {
|
||||
v[i] <- mean(sample(x, 77))
|
||||
}
|
||||
|
||||
hist(v, breaks = 20, col = "#F8DDFF")
|
||||
hist(v, breaks = 20, col = "#F8DDFF", freq = FALSE)
|
||||
|
||||
# The outcomes all give normal distributions, regardless what the details of our
|
||||
# original distribution were!
|
||||
@ -466,7 +462,7 @@ chisq.test(countsL1, countsG1.9, simulate.p.value = TRUE, B = 10000)
|
||||
# be applied to discrete distributions. But we need to talk a bit about
|
||||
# converting counts to p.m.f.'s.
|
||||
|
||||
# === 4.2.1 An example from tossing dice
|
||||
# === 4.2.1 An example from tossing dice
|
||||
|
||||
# The p.m.f of an honest die is (1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6). But
|
||||
# there is an issue when we convert sampled counts to frequencies, and estimate
|
||||
@ -589,7 +585,7 @@ abline(v = KLdiv(rep(1/6, 6), pmfPC(counts, 1:6)), col="firebrick")
|
||||
# somewhat but not drastically atypical.
|
||||
|
||||
|
||||
# === 4.2.2 An example from lognormal distributions
|
||||
# === 4.2.2 An example from lognormal distributions
|
||||
|
||||
# We had compared a set of lognormal and gamma distributions above, now we
|
||||
# can use KL-divergence to quantify their similarity:
|
||||
|
Loading…
x
Reference in New Issue
Block a user