Initial commit

Moved training code from 'avarias'
This commit is contained in:
Harrison Deng 2023-05-29 15:45:37 -05:00
commit d6c0130477
4 changed files with 362 additions and 0 deletions

230
.gitignore vendored Normal file
View File

@ -0,0 +1,230 @@
# File created using '.gitignore Generator' for Visual Studio Code: https://bit.ly/vscode-gig
# Created by https://www.toptal.com/developers/gitignore/api/visualstudiocode,linux,python,venv,virtualenv
# Edit at https://www.toptal.com/developers/gitignore?templates=visualstudiocode,linux,python,venv,virtualenv
### Linux ###
*~
# temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*
# KDE directory preferences
.directory
# Linux trash folder which might appear on any partition or disk
.Trash-*
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
### Python Patch ###
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
poetry.toml
# ruff
.ruff_cache/
# LSP config files
pyrightconfig.json
### venv ###
# Virtualenv
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
[Bb]in
[Ii]nclude
[Ll]ib
[Ll]ib64
[Ll]ocal
[Ss]cripts
pyvenv.cfg
pip-selfcheck.json
### VirtualEnv ###
# Virtualenv
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
### VisualStudioCode ###
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
!.vscode/*.code-snippets
# Local History for Visual Studio Code
.history/
# Built Visual Studio Code Extensions
*.vsix
### VisualStudioCode Patch ###
# Ignore all local history of files
.history
.ionide
# End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,linux,python,venv,virtualenv
# Custom rules (everything added below won't be overriden by 'Generate .gitignore File' if you use 'Update' option)

8
environment.yml Normal file
View File

@ -0,0 +1,8 @@
name: huggingface_transformers_utils
channels:
- conda-forge
- huggingface
dependencies:
- transformers=4.28
- pip:
- evaluate==0.4.0

3
tox.ini Normal file
View File

@ -0,0 +1,3 @@
[flake8]
max-line-length = 88
extend-ignore = E203

121
trainers.py Normal file
View File

@ -0,0 +1,121 @@
import numpy as np
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
Trainer,
TrainingArguments,
EvalPrediction,
)
from typing import Union
from datasets import load_dataset
from datasets.dataset_dict import (
DatasetDict,
Dataset,
IterableDatasetDict,
)
from datasets.iterable_dataset import IterableDataset
import evaluate
class TokenClassificationTrainer:
def __init__(
self,
model: str,
dataset: str,
labels_name: str = "labels",
evaluator: str = "seqeval",
) -> None:
self._dataset: Union[
DatasetDict, Dataset, IterableDatasetDict, IterableDataset
] = load_dataset(dataset)
self._labels: list[str] = (
self._dataset["train"].features[labels_name].feature.names
) # type: ignore
self._id_to_label: dict[int, str] = {}
self._label_to_id: dict[str, int] = {}
for id, label in enumerate(self._labels):
self._id_to_label[id] = label
self._label_to_id[label] = id
self._model = AutoModelForSequenceClassification.from_pretrained(
model,
num_labels=len(self._labels),
id2label=self._id_to_label,
label2id=self._label_to_id,
)
self._tokenizer = AutoTokenizer.from_pretrained(model)
self._data_collator = DataCollatorForTokenClassification(
tokenizer=self._tokenizer
)
self._evaluator = evaluate.load(evaluator)
def tokenize_and_align_labels(self, examples):
# Straight from
# https://huggingface.co/docs/transformers/tasks/token_classification
tokenized_inputs = self._tokenizer(
examples["tokens"], truncation=True, is_split_into_words=True
)
labels = []
for i, label in enumerate(examples[f"ner_tags"]):
word_ids = tokenized_inputs.word_ids(
batch_index=i
) # Map tokens to their respective word.
previous_word_idx = None
label_ids = []
for word_idx in word_ids: # Set the special tokens to -100.
if word_idx is None:
label_ids.append(-100)
elif (
word_idx != previous_word_idx
): # Only label the first token of a given word.
label_ids.append(label[word_idx])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
def tokenize_and_align_labels_over_dataset(self):
return self._dataset.map(self.tokenize_and_align_labels, batched=True)
def compute_metrics(
self, evaluation_prediction: EvalPrediction
) -> dict[str, float]:
predictions, expectations = evaluation_prediction
predictions = np.argmax(predictions, axis=2)
true_predictions = [
[self._labels[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, expectations)
]
true_labels = [
[self._labels[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, expectations)
]
results: dict[str, float] = self._evaluator.compute(
predictions=true_predictions, references=true_labels
) # type: ignore
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
def train(self, output_dir: str, **arguments):
trainer = Trainer(
args=TrainingArguments(output_dir=output_dir, **arguments),
train_dataset=self._dataset["train"], # type: ignore
eval_dataset=self._dataset["test"], # type: ignore
tokenizer=self._tokenizer,
data_collator=self._data_collator,
compute_metrics=self.compute_metrics,
)
trainer.train()