Initial commit
Moved training code from 'avarias'
This commit is contained in:
commit
d6c0130477
230
.gitignore
vendored
Normal file
230
.gitignore
vendored
Normal file
@ -0,0 +1,230 @@
|
|||||||
|
# File created using '.gitignore Generator' for Visual Studio Code: https://bit.ly/vscode-gig
|
||||||
|
# Created by https://www.toptal.com/developers/gitignore/api/visualstudiocode,linux,python,venv,virtualenv
|
||||||
|
# Edit at https://www.toptal.com/developers/gitignore?templates=visualstudiocode,linux,python,venv,virtualenv
|
||||||
|
|
||||||
|
### Linux ###
|
||||||
|
*~
|
||||||
|
|
||||||
|
# temporary files which can be created if a process still has a handle open of a deleted file
|
||||||
|
.fuse_hidden*
|
||||||
|
|
||||||
|
# KDE directory preferences
|
||||||
|
.directory
|
||||||
|
|
||||||
|
# Linux trash folder which might appear on any partition or disk
|
||||||
|
.Trash-*
|
||||||
|
|
||||||
|
# .nfs files are created when an open file is removed but is still being accessed
|
||||||
|
.nfs*
|
||||||
|
|
||||||
|
### Python ###
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
#pdm.lock
|
||||||
|
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||||
|
# in version control.
|
||||||
|
# https://pdm.fming.dev/#use-with-ide
|
||||||
|
.pdm.toml
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
||||||
|
|
||||||
|
### Python Patch ###
|
||||||
|
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
||||||
|
poetry.toml
|
||||||
|
|
||||||
|
# ruff
|
||||||
|
.ruff_cache/
|
||||||
|
|
||||||
|
# LSP config files
|
||||||
|
pyrightconfig.json
|
||||||
|
|
||||||
|
### venv ###
|
||||||
|
# Virtualenv
|
||||||
|
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
|
||||||
|
[Bb]in
|
||||||
|
[Ii]nclude
|
||||||
|
[Ll]ib
|
||||||
|
[Ll]ib64
|
||||||
|
[Ll]ocal
|
||||||
|
[Ss]cripts
|
||||||
|
pyvenv.cfg
|
||||||
|
pip-selfcheck.json
|
||||||
|
|
||||||
|
### VirtualEnv ###
|
||||||
|
# Virtualenv
|
||||||
|
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
|
||||||
|
|
||||||
|
### VisualStudioCode ###
|
||||||
|
.vscode/*
|
||||||
|
!.vscode/settings.json
|
||||||
|
!.vscode/tasks.json
|
||||||
|
!.vscode/launch.json
|
||||||
|
!.vscode/extensions.json
|
||||||
|
!.vscode/*.code-snippets
|
||||||
|
|
||||||
|
# Local History for Visual Studio Code
|
||||||
|
.history/
|
||||||
|
|
||||||
|
# Built Visual Studio Code Extensions
|
||||||
|
*.vsix
|
||||||
|
|
||||||
|
### VisualStudioCode Patch ###
|
||||||
|
# Ignore all local history of files
|
||||||
|
.history
|
||||||
|
.ionide
|
||||||
|
|
||||||
|
# End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,linux,python,venv,virtualenv
|
||||||
|
|
||||||
|
# Custom rules (everything added below won't be overriden by 'Generate .gitignore File' if you use 'Update' option)
|
||||||
|
|
8
environment.yml
Normal file
8
environment.yml
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
name: huggingface_transformers_utils
|
||||||
|
channels:
|
||||||
|
- conda-forge
|
||||||
|
- huggingface
|
||||||
|
dependencies:
|
||||||
|
- transformers=4.28
|
||||||
|
- pip:
|
||||||
|
- evaluate==0.4.0
|
121
trainers.py
Normal file
121
trainers.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
import numpy as np
|
||||||
|
from transformers import (
|
||||||
|
AutoModelForSequenceClassification,
|
||||||
|
AutoTokenizer,
|
||||||
|
DataCollatorForTokenClassification,
|
||||||
|
Trainer,
|
||||||
|
TrainingArguments,
|
||||||
|
EvalPrediction,
|
||||||
|
)
|
||||||
|
from typing import Union
|
||||||
|
from datasets import load_dataset
|
||||||
|
from datasets.dataset_dict import (
|
||||||
|
DatasetDict,
|
||||||
|
Dataset,
|
||||||
|
IterableDatasetDict,
|
||||||
|
)
|
||||||
|
from datasets.iterable_dataset import IterableDataset
|
||||||
|
import evaluate
|
||||||
|
|
||||||
|
|
||||||
|
class TokenClassificationTrainer:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
dataset: str,
|
||||||
|
labels_name: str = "labels",
|
||||||
|
evaluator: str = "seqeval",
|
||||||
|
) -> None:
|
||||||
|
self._dataset: Union[
|
||||||
|
DatasetDict, Dataset, IterableDatasetDict, IterableDataset
|
||||||
|
] = load_dataset(dataset)
|
||||||
|
self._labels: list[str] = (
|
||||||
|
self._dataset["train"].features[labels_name].feature.names
|
||||||
|
) # type: ignore
|
||||||
|
self._id_to_label: dict[int, str] = {}
|
||||||
|
self._label_to_id: dict[str, int] = {}
|
||||||
|
for id, label in enumerate(self._labels):
|
||||||
|
self._id_to_label[id] = label
|
||||||
|
self._label_to_id[label] = id
|
||||||
|
self._model = AutoModelForSequenceClassification.from_pretrained(
|
||||||
|
model,
|
||||||
|
num_labels=len(self._labels),
|
||||||
|
id2label=self._id_to_label,
|
||||||
|
label2id=self._label_to_id,
|
||||||
|
)
|
||||||
|
self._tokenizer = AutoTokenizer.from_pretrained(model)
|
||||||
|
self._data_collator = DataCollatorForTokenClassification(
|
||||||
|
tokenizer=self._tokenizer
|
||||||
|
)
|
||||||
|
self._evaluator = evaluate.load(evaluator)
|
||||||
|
|
||||||
|
def tokenize_and_align_labels(self, examples):
|
||||||
|
# Straight from
|
||||||
|
# https://huggingface.co/docs/transformers/tasks/token_classification
|
||||||
|
tokenized_inputs = self._tokenizer(
|
||||||
|
examples["tokens"], truncation=True, is_split_into_words=True
|
||||||
|
)
|
||||||
|
|
||||||
|
labels = []
|
||||||
|
for i, label in enumerate(examples[f"ner_tags"]):
|
||||||
|
word_ids = tokenized_inputs.word_ids(
|
||||||
|
batch_index=i
|
||||||
|
) # Map tokens to their respective word.
|
||||||
|
previous_word_idx = None
|
||||||
|
label_ids = []
|
||||||
|
for word_idx in word_ids: # Set the special tokens to -100.
|
||||||
|
if word_idx is None:
|
||||||
|
label_ids.append(-100)
|
||||||
|
elif (
|
||||||
|
word_idx != previous_word_idx
|
||||||
|
): # Only label the first token of a given word.
|
||||||
|
label_ids.append(label[word_idx])
|
||||||
|
else:
|
||||||
|
label_ids.append(-100)
|
||||||
|
previous_word_idx = word_idx
|
||||||
|
labels.append(label_ids)
|
||||||
|
|
||||||
|
tokenized_inputs["labels"] = labels
|
||||||
|
return tokenized_inputs
|
||||||
|
|
||||||
|
def tokenize_and_align_labels_over_dataset(self):
|
||||||
|
return self._dataset.map(self.tokenize_and_align_labels, batched=True)
|
||||||
|
|
||||||
|
def compute_metrics(
|
||||||
|
self, evaluation_prediction: EvalPrediction
|
||||||
|
) -> dict[str, float]:
|
||||||
|
predictions, expectations = evaluation_prediction
|
||||||
|
predictions = np.argmax(predictions, axis=2)
|
||||||
|
|
||||||
|
true_predictions = [
|
||||||
|
[self._labels[p] for (p, l) in zip(prediction, label) if l != -100]
|
||||||
|
for prediction, label in zip(predictions, expectations)
|
||||||
|
]
|
||||||
|
|
||||||
|
true_labels = [
|
||||||
|
[self._labels[l] for (p, l) in zip(prediction, label) if l != -100]
|
||||||
|
for prediction, label in zip(predictions, expectations)
|
||||||
|
]
|
||||||
|
|
||||||
|
results: dict[str, float] = self._evaluator.compute(
|
||||||
|
predictions=true_predictions, references=true_labels
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
return {
|
||||||
|
"precision": results["overall_precision"],
|
||||||
|
"recall": results["overall_recall"],
|
||||||
|
"f1": results["overall_f1"],
|
||||||
|
"accuracy": results["overall_accuracy"],
|
||||||
|
}
|
||||||
|
|
||||||
|
def train(self, output_dir: str, **arguments):
|
||||||
|
trainer = Trainer(
|
||||||
|
args=TrainingArguments(output_dir=output_dir, **arguments),
|
||||||
|
train_dataset=self._dataset["train"], # type: ignore
|
||||||
|
eval_dataset=self._dataset["test"], # type: ignore
|
||||||
|
tokenizer=self._tokenizer,
|
||||||
|
data_collator=self._data_collator,
|
||||||
|
compute_metrics=self.compute_metrics,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
Reference in New Issue
Block a user