# tocID <- "scripts/ABC-dbUtilities.R" # # database utilities for ABC learning units # # ============================================================================== #TOC> ========================================================================== #TOC> #TOC> Section Title Line #TOC> ------------------------------------------------- #TOC> 1 PACKAGES 32 #TOC> 2 FUNCTIONS 50 #TOC> 2.01 dbSanitizeSequence() 53 #TOC> 2.02 dbConfirmUnique() 88 #TOC> 2.03 dbInit() 106 #TOC> 2.04 dbAutoincrement() 147 #TOC> 2.05 dbAddProtein() 160 #TOC> 2.06 dbAddFeature() 180 #TOC> 2.07 dbAddTaxonomy() 199 #TOC> 2.08 dbAddAnnotation() 215 #TOC> 2.09 dbFetchUniProtSeq() 243 #TOC> 2.10 dbFetchPrositeFeatures() 267 #TOC> 2.11 node2text() 311 #TOC> 2.12 dbFetchNCBItaxData() 323 #TOC> 2.13 UniProtIDmap() 362 #TOC> 3 TESTS 401 #TOC> #TOC> ========================================================================== # = 1 PACKAGES ============================================================ if (! requireNamespace("jsonlite", quietly = TRUE)) { install.packages("jsonlite") } if (! requireNamespace("httr", quietly = TRUE)) { install.packages("httr") } if (! requireNamespace("xml2", quietly = TRUE)) { install.packages("xml2") } # = 2 FUNCTIONS =========================================================== # == 2.01 dbSanitizeSequence() ============================================= dbSanitizeSequence <- function(s, unambiguous = TRUE) { # Remove FASTA header lines, if any, # flatten any structure that s has, # remove all non-letters except "-" (gap) and "*" (stop), # convert to uppercase. # # Parameters: # s chr A DNA or protein sequence plus other characters # unambiguous bool if TRUE, stop() if any letter remaining after # processing matches an ambiguity code. This is likely # due to inadvertently including meta-data, such as # a FASTA header, with the sequence. # Note: since U is an ambiguity code for amino acid sequences, you need # to set unambiguous = FALSE to process RNA sequences with Uracil. # Value: chr a valid, uppercase, amino acid sequence # s <- as.character(unlist(s)) # convert complex object to plain chr vector s <- unlist(strsplit(s, "\n")) # split up at linebreaks, if any s <- s[! grepl("^>", s)] # drop all lines beginning">" (FASTA header) s <- paste(s, collapse="") # combine into single string s <- toupper(gsub("[^a-zA-Z*-]", "", s)) if (unambiguous) { amb <- "([bjouxzBJOUXZ])" # parentheses capture the match ambChar <- unlist(regmatches(s, regexec(amb, s)))[1] if (! is.na(ambChar)) { stop(paste("Input contains ambiguous codes(s): \"", ambChar, "\".", sep="")) } } return(s) } # == 2.02 dbConfirmUnique() ================================================ dbConfirmUnique <- function(x) { # x is a vector of logicals. # returns x if x has exactly one TRUE element. # stop() otherwise. if (any(!is.logical(x))) { stop("PANIC: Input is not a boolean vector.") } else if (sum(x) == 0) { stop("PANIC: No match found.") } else if (sum(x) > 1) { stop("PANIC: More than one match found.") } else { return(x) } } # == 2.03 dbInit() ========================================================= dbInit <- function() { # Return an empty instance of the protein database # Open the link and study the schema: # https://docs.google.com/presentation/d/13vWaVcFpWEOGeSNhwmqugj2qTQuH1eZROgxWdHGEMr0 db <- list() db$version <- "1.0" db$protein <- data.frame( ID = numeric(), name = character(), RefSeqID = character(), UniProtID = character(), taxonomyID = numeric(), sequence = character()) db$taxonomy <- data.frame( ID = numeric(), species = character()) db$annotation <- data.frame( ID = numeric(), proteinID = numeric(), featureID = numeric(), start = numeric(), end = numeric()) db$feature <- data.frame( ID = numeric(), name = character(), description = character(), sourceDB = character(), accession = character()) return(db) } # == 2.04 dbAutoincrement() ================================================ dbAutoincrement <- function(tb) { # Return a unique integer that can be used as a primary key # Value: # num a number one-larger than the largest current value in table$ID if (length(tb$ID) == 0) { return(1) } else { return(max(tb$ID) + 1) } } # == 2.05 dbAddProtein() =================================================== dbAddProtein <- function(db, jsonDF) { # Add one or more protein entries to the database db. # Parameters: # db list a database created with dbInit() # jsonDF data frame protein data imported into a data frame with # fromJSON() for (i in seq_len(nrow(jsonDF))) { x <- data.frame(ID = dbAutoincrement(db$protein), name = jsonDF$name[i], RefSeqID = jsonDF$RefSeqID[i], UniProtID = jsonDF$UniProtID[i], taxonomyID = jsonDF$taxonomyID[i], sequence = dbSanitizeSequence(jsonDF$sequence[i])) db$protein <- rbind(db$protein, x) } return(db) } # == 2.06 dbAddFeature() =================================================== dbAddFeature <- function(db, jsonDF) { # Add one or more feature entries to the database db. # Parameters: # db list a database created with dbInit() # jsonDF data frame feature data imported into a data frame with # fromJSON() for (i in seq_len(nrow(jsonDF))) { x <- data.frame(ID = dbAutoincrement(db$feature), name = jsonDF$name[i], description = jsonDF$description[i], sourceDB = jsonDF$sourceDB[i], accession = jsonDF$accession[i]) db$feature <- rbind(db$feature, x) } return(db) } # == 2.07 dbAddTaxonomy() ================================================== dbAddTaxonomy <- function(db, jsonDF) { # Add one or more taxonomy entries to the database db. # Parameters: # db list A database created with dbInit() # jsonDF data frame Taxonomy data imported into a data frame with # fromJSON() for (i in seq_len(nrow(jsonDF))) { x <- data.frame( ID = jsonDF$ID[i], species = jsonDF$species[i]) db$taxonomy <- rbind(db$taxonomy, x) } return(db) } # == 2.08 dbAddAnnotation() ================================================ dbAddAnnotation <- function(db, jsonDF) { # Add one or more annotation entries to the database db. # Parameters: # db list a database created with dbInit() # jsonDF data frame annotation data imported into a data frame with # fromJSON() for (i in seq_len(nrow(jsonDF))) { sel <- jsonDF$pName[i] == db$protein$name sel <- dbConfirmUnique(sel) pID <- db$protein$ID[sel] sel <- jsonDF$fName[i] == db$feature$name sel <- dbConfirmUnique(sel) fID <- db$feature$ID[sel] x <- data.frame(ID = dbAutoincrement(db$annotation), proteinID = pID, featureID = fID, start = as.integer(jsonDF$start[i]), end = as.integer(jsonDF$end[i])) db$annotation <- rbind(db$annotation, x) } return(db) } # == 2.09 dbFetchUniProtSeq() ============================================== dbFetchUniProtSeq <- function(ID) { # Fetch a protein sequence from UniProt. # Parameters: # ID char a UniProt ID (accession number) # Value: # char the sequence # If the operation is not successful, a 0-length string is returned URL <- sprintf("http://www.uniprot.org/uniprot/%s.fasta", ID) response <- httr::GET(URL) mySeq <- character() if (httr::status_code(response) == 200) { x <- as.character(response) x <- strsplit(x, "\n") mySeq <- dbSanitizeSequence(x) } return(mySeq) } # == 2.10 dbFetchPrositeFeatures() ========================================= dbFetchPrositeFeatures <- function(ID) { # Fetch feature annotations from ScanProsite. # Parameters: # ID char a UniProt ID (accession number) # Value: # data frame uID char UniProt ID # start num start of motif # end num end of motif # psID char PROSITE motif ID # psName char PROSITE motif name # If the operation is not successful, a 0-length data frame is returned. URL <- "https://prosite.expasy.org/cgi-bin/prosite/PSScan.cgi" response <- httr::POST(URL, body = list(meta = "opt1", meta1_protein = "opt1", seq = ID, skip = "on", output = "tabular")) myFeatures <- data.frame() if (httr::status_code(response) == 200) { lines <- unlist(strsplit(httr::content(response, "text"), "\\n")) patt <- sprintf("\\|%s\\|", UniProtID) lines <- lines[grep(patt, lines)] for (line in lines) { tokens <- unlist(strsplit(line, "\\t|\\|")) myFeatures <- rbind(myFeatures, data.frame(uID = tokens[2], start = as.numeric(tokens[4]), end = as.numeric(tokens[5]), psID = tokens[6], psName = tokens[7])) } } return(myFeatures) } # == 2.11 node2text() ====================================================== node2text <- function(doc, tag) { # an extractor function for the contents of elements # between given tags in an XML response. # Contents of all matching elements is returned in # a vector of strings. path <- paste0("//", tag) nodes <- xml2::xml_find_all(doc, path) return(xml2::xml_text(nodes)) } # == 2.12 dbFetchNCBItaxData() ============================================= dbFetchNCBItaxData <- function(ID) { # Fetch feature taxID and Organism from the NCBI. # Parameters: # ID char a RefSeq ID (accession number) # Value: # data frame taxID num NCBI taxID # organism char organism for this taxID # If the operation is not successful, a 0-length data frame is returned. eUtilsBase <- "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/" URL <- paste(eUtilsBase, "esearch.fcgi?", "db=protein", "&term=", ID, sep="") myXML <- xml2::read_xml(URL) GID <- node2text(myXML, "Id") URL <- paste0(eUtilsBase, "esummary.fcgi?", "db=protein", "&id=", GID, "&version=2.0") myXML <- xml2::read_xml(URL) x <- as.integer(node2text(myXML, "TaxId")) y <- node2text(myXML, "Organism") tID <- data.frame() if (length(x) > 0 && length(y) > 0) { tID <- data.frame(taxID = x, organism = y) } return(tID) } # == 2.13 UniProtIDmap() =================================================== UniProtIDmap <- function (s, mapFrom = "P_REFSEQ_AC", mapTo = "ACC") { # Use UniProt ID mapping service to map one or more IDs # Parameters: # s char A string of white-space separated IDs # mapFrom char the database in which the IDs in s are valid. # Default is RefSeq protein # mapTo char the database in which the target IDs are valid. # Default is UniProtKB # Value # A data frame of mapped IDs, with column names From and To, or an # empty data frame if the mapping was unsuccessful. No rows are returned # for IDs that are not mapped. # Initialize curl httr::set_config(httr::config(http_version = 0)) URL <- "https://www.uniprot.org/uploadlists/" response <- httr::POST(URL, body = list(from = mapFrom, to = mapTo, format = "tab", query = s)) if (httr::status_code(response) == 200) { # 200: oK myMap <- read.delim(file = textConnection(httr::content(response)), sep = "\t") colnames(myMap) <- c("From", "To") } else { myMap <- data.frame() warning(paste("No uniProt ID mapping returned:", "server sent status", httr::status_code(response))) } return(myMap) } # = 3 TESTS =============================================================== if (FALSE) { if (! requireNamespace("testthat", quietly = TRUE)) { install.packages("testthat") } # ToDo: test everything here } # [END]