# tocID <- "scripts/ABC-makeScCCnet.R" # # Create a subnetwork of high-confidence yeast genes with a "mitotic cell cycle" # GOSlim annotation. # # Boris Steipe for ABC learning units # # Notes: # # The large source- datafiles are NOT posted to github. If you want to # experiment with your own code, download them and place them into your # local ./data directory. # # STRING data source: # Download page: # https://string-db.org/cgi/download.pl?species_text=Saccharomyces+cerevisiae # Data: (20.1 mb) # https://stringdb-static.org/download/protein.links.full.v11.0/4932.protein.links.full.v11.0.txt.gz # # GOSlim data source: (Note: this has moved from GO to SGD) # Info page: https://www.yeastgenome.org/downloads # Info page: http://sgd-archive.yeastgenome.org/curation/literature/ # Data: (3 mb) # http://sgd-archive.yeastgenome.org/curation/literature/go_slim_mapping.tab # # # Version: 1.2 # # Date: 2017-10 - 2020-09 # Author: Boris Steipe (boris.steipe@utoronto.ca) # # Versions: # 1.2 2020 Update. GO Slim Yeast mow at SGD # 1.1 Change from require() to requireNamespace(), # use ::() idiom throughout # 1.0 First code copied from 2016 material. # # TODO: # # ============================================================================== # SRCDIR <- "./instructor" #TOC> ========================================================================== #TOC> #TOC> Section Title Line #TOC> --------------------------------------------------------------- #TOC> 1 INITIALIZE 58 #TOC> 2 STRING FUNCTIONAL INTERACTION DATA 66 #TOC> 3 GOSlim FUNCTIONAL ANNOTATIONS 96 #TOC> 3.1 Intersect interactions and annotations 122 #TOC> 4 DEFINE THE CELL-CYCLE NETWORK 128 #TOC> #TOC> ========================================================================== # = 1 INITIALIZE ========================================================== SRCDIR <- "./data" if (! requireNamespace("readr", quietly = TRUE)) { install.packages("readr") } # = 2 STRING FUNCTIONAL INTERACTION DATA ================================== # Read STRING Data (needs to be downloaded from database, see URL in Notes) # The .gz compressed version is 20MB, the uncompressed versioj is 110MB - # really not necessary to uncompress since readr:: can read from compressed # files, and does so automatically, based on the file extension. ( fn <- file.path(SRCDIR, "4932.protein.links.full.v11.0.txt.gz") ) STR <- readr::read_delim(fn, delim = " ") # Subset only IDs and combined_score column STR <- STR[ , c("protein1", "protein2", "combined_score")] # head(STR) # sum(STR$combined_score > 909) # 100270 edges # subset for 100,000 highest confidence edges STR <- STR[(STR$combined_score > 909), ] head(STR) # IDs are formatted like 4932.YAL005C ... drop the "4932." prefix STR$protein1 <- gsub("^4932\\.", "", STR$protein1) STR$protein2 <- gsub("^4932\\.", "", STR$protein2) head(STR) # get a vector of gene names in this list myIntxGenes <- unique(c(STR$protein1, STR$protein2)) # yeast systematic gene # names length(myIntxGenes) sample(myIntxGenes, 10) # choose 10 at random (sanity check) # = 3 GOSlim FUNCTIONAL ANNOTATIONS ======================================= # # Read GOSlim data (needs to be downloaded from database, see URL in Notes) ( fn <- file.path(SRCDIR, "go_slim_mapping.tab") ) Gsl <- readr::read_tsv(fn, col_names = c("ID", "name", "SGDId", "Ontology", "termName", "termID", "status")) head(Gsl) # What cell cycle names does it contain? myGslTermNames <- unique(Gsl$termName) # 169 unique terms myGslTermNames[grep("cycle", myGslTermNames)] # [1] "regulation of cell cycle" "mitotic cell cycle" "meiotic cell cycle" # Choose "mitotic cell cycle" as the GOslim term to subset with scCCgenes <- unique(Gsl$ID[Gsl$termName == "mitotic cell cycle"]) length(scCCgenes) # 324 genes annotated to that term # == 3.1 Intersect interactions and annotations ============================ sum(scCCgenes %in% myIntxGenes) # 307 of these have high-confidence # # functional interactions # = 4 DEFINE THE CELL-CYCLE NETWORK ======================================= # # Define scCCnet ... the S. Cervisiae Cell Cycle network # Subset all rows for which BOTH genes are in the GOslim cell cycle set # scCCnet <- STR[(STR$protein1 %in% scCCgenes) & (STR$protein2 %in% scCCgenes), ] # How many genes are there? length(unique(c(scCCnet$protein1, scCCnet$protein2))) #283 # Each edge is listed twice - now remove duplicates. # Step 1: make a vector: sort two names so the fiRst one is alphabetically # smaller Than the second one. This brings the two names into a defined # order. Then concatenate them with a "." - the resulting string # is always the same, for any order. E.g. c("A", "B") gives "A.B" # and c("B", "A") also gives "A.B". This identifies duplicates. x <- apply(cbind(scCCnet$protein1, scCCnet$protein2), 1, FUN = function(x) { return(paste(sort(x), collapse = ".")) }) head(x) # "YAL016W.YGR040W" "YAL016W.YOR014W" "YAL016W.YDL188C" ... etc. sum(duplicated(x)) # 1453 # Step 2: drop all rows that contain duplicates in x scCCnet <- scCCnet[! duplicated(x), ] # Confirm we didn't loose genes length(unique(c(scCCnet$protein1, scCCnet$protein2))) # 283, no change nrow(scCCnet) # Network has 283 nodes, 1453 edges saveRDS(scCCnet, file = "./data/scCCnet.rds") # scCCnet <- readRDS("./data/scCCnet.rds") # <<<- use this to restore the # object when needed # [END]