Correction re. Jeffreys' pseudocounts
This commit is contained in:
		@@ -25,7 +25,7 @@
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#TOC> ==========================================================================
 | 
			
		||||
#TOC> 
 | 
			
		||||
#TOC>
 | 
			
		||||
#TOC>   Section  Title                                                   Line
 | 
			
		||||
#TOC> -----------------------------------------------------------------------
 | 
			
		||||
#TOC>   1        Introduction                                              49
 | 
			
		||||
@@ -42,7 +42,7 @@
 | 
			
		||||
#TOC>   4.2.1    An example from tossing dice                             452
 | 
			
		||||
#TOC>   4.2.2    An example from lognormal distributions                  574
 | 
			
		||||
#TOC>   4.3      Kolmogorov-Smirnov test for continuous distributions     616
 | 
			
		||||
#TOC> 
 | 
			
		||||
#TOC>
 | 
			
		||||
#TOC> ==========================================================================
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -449,7 +449,7 @@ chisq.test(countsL1, countsG1.9, simulate.p.value = TRUE, B = 10000)
 | 
			
		||||
# be applied to discrete distributions. But we need to talk a bit about
 | 
			
		||||
# converting counts to p.m.f.'s.
 | 
			
		||||
 | 
			
		||||
# ===  4.2.1  An example from tossing dice                        
 | 
			
		||||
# ===  4.2.1  An example from tossing dice
 | 
			
		||||
 | 
			
		||||
#  The p.m.f of an honest die is (1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6). But
 | 
			
		||||
#  there is an issue when we convert sampled counts to frequencies, and estimate
 | 
			
		||||
@@ -482,7 +482,7 @@ pmf
 | 
			
		||||
# for ordered data one could substitute the average values of the two bracketing
 | 
			
		||||
# outcomes. But a simple and quite robust solution is to add "pseudocounts".
 | 
			
		||||
# This is called adding a Laplace prior, or a Jeffreys prior: in our case,
 | 
			
		||||
# simply add 0.5 to every value that the two functions don't share.
 | 
			
		||||
# simply add 0.5 to every category.
 | 
			
		||||
 | 
			
		||||
# pmf of an honest die
 | 
			
		||||
pmfHD <- rep(1/6, 6)
 | 
			
		||||
@@ -571,7 +571,7 @@ abline(v = KLdiv(rep(1/6, 6), pmfPC(counts, 1:6)), col="firebrick")
 | 
			
		||||
# somewhat but not drastically atypical.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# ===  4.2.2  An example from lognormal distributions             
 | 
			
		||||
# ===  4.2.2  An example from lognormal distributions
 | 
			
		||||
 | 
			
		||||
# We had compared a set of lognormal and gamma distributions above, now we
 | 
			
		||||
# can use KL-divergence to quantify their similarity:
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user