bugfixes
This commit is contained in:
parent
553b042f20
commit
373da689df
@ -3,13 +3,14 @@
|
||||
# Purpose: A Bioinformatics Course:
|
||||
# R code accompanying the RPR-Genetic_code_optimality unit.
|
||||
#
|
||||
# Version: 1.0
|
||||
# Version: 1.0.1
|
||||
#
|
||||
# Date: 2017 10 16
|
||||
# Author: Boris Steipe (boris.steipe@utoronto.ca)
|
||||
#
|
||||
# Versions:
|
||||
# 1.0 New material.
|
||||
# 1.0.1 Fixed two bugs discovered by Suan Chin Yeo.
|
||||
# 1.0 New material.
|
||||
#
|
||||
#
|
||||
# TODO:
|
||||
@ -25,7 +26,7 @@
|
||||
|
||||
|
||||
#TOC> ==========================================================================
|
||||
#TOC>
|
||||
#TOC>
|
||||
#TOC> Section Title Line
|
||||
#TOC> --------------------------------------------------------
|
||||
#TOC> 1 Designing a computational experiment 57
|
||||
@ -38,7 +39,7 @@
|
||||
#TOC> 2.2.4 measure effect 214
|
||||
#TOC> 3 Run the experiment 261
|
||||
#TOC> 4 Task solutions 348
|
||||
#TOC>
|
||||
#TOC>
|
||||
#TOC> ==========================================================================
|
||||
|
||||
|
||||
@ -118,10 +119,10 @@ swappedGC <- function(GC) {
|
||||
# Value: named chr same vector with random amino acid assignments where the
|
||||
# amino acids have been swapped.
|
||||
|
||||
aaOrig <- unique(GC) # the amino acids in the input code
|
||||
aaSwap <- sample(aa, length(aa)) # shuffled
|
||||
names(aaSwap) <- aaOrig # name them after the original
|
||||
GC[1:64] <- aaSwap[GC] # replace original with shuffled
|
||||
aaOrig <- unique(GC) # the amino acids in the input code
|
||||
aaSwap <- sample(aaOrig, length(aaOrig)) # shuffled
|
||||
names(aaSwap) <- aaOrig # name them after the original
|
||||
GC[1:64] <- aaSwap[GC] # replace original with shuffled
|
||||
|
||||
return(GC)
|
||||
}
|
||||
@ -138,7 +139,7 @@ swappedGC <- function(GC) {
|
||||
# - we count the number of mutations and evaluate their severity.
|
||||
|
||||
|
||||
# === 2.2.1 reverse-translate
|
||||
# === 2.2.1 reverse-translate
|
||||
|
||||
# To reverse-translate an amino acid vector, we randomly pick one of its
|
||||
# codons from a genetic code, and assemble all codons to a sequence.
|
||||
@ -163,7 +164,7 @@ traRev <- function(s, GC) {
|
||||
}
|
||||
|
||||
|
||||
# === 2.2.2 Randomly mutate
|
||||
# === 2.2.2 Randomly mutate
|
||||
|
||||
# To mutate, we split a codon into it's three nucleotides, then randomly replace
|
||||
# one of the three with another nucleotide.
|
||||
@ -188,7 +189,7 @@ randMut <- function(vC) {
|
||||
|
||||
|
||||
|
||||
# === 2.2.3 Forward- translate
|
||||
# === 2.2.3 Forward- translate
|
||||
|
||||
traFor <- function(vC, GC) {
|
||||
# Parameters:
|
||||
@ -206,7 +207,7 @@ traFor <- function(vC, GC) {
|
||||
}
|
||||
|
||||
|
||||
# === 2.2.4 measure effect
|
||||
# === 2.2.4 measure effect
|
||||
|
||||
# How do we evaluate the effect of the mutation? We'll take a simple ad hoc
|
||||
# approach: we divide amino acids into hydrophobic, hydrophilic, and neutral
|
||||
@ -291,7 +292,7 @@ hist(valUGC,
|
||||
|
||||
# This looks like a normal distribution. Let's assume the effect of mutations
|
||||
# under the universal genetic code is the mean of this distribution:
|
||||
effectUGC <- mean(val) # 178.1
|
||||
effectUGC <- mean(valUGC) # 178.1
|
||||
|
||||
# Now we can look at the effects of alternate genetic codes:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user