Compare commits

..

No commits in common. "develop" and "0.13.1" have entirely different histories.

5 changed files with 57 additions and 117 deletions

View File

@ -1,6 +1,5 @@
{
"recommendations": [
"piotrpalarz.vscode-gitignore-generator",
"gruntfuggly.todo-tree"
"piotrpalarz.vscode-gitignore-generator"
]
}

View File

@ -9,7 +9,7 @@ import shutil
import tempfile
from typing import Any, AsyncGenerator, AsyncIterable, Coroutine, Iterable, Mapping, Sequence, Set, Union
from aiohttp import ClientOSError, ClientSession, ClientTimeout, ServerDisconnectedError
from aiohttp import ClientSession, ClientTimeout
from autobigs.engine.reading import read_fasta
from autobigs.engine.structures.alignment import PairwiseAlignment
@ -43,12 +43,11 @@ class BIGSdbMLSTProfiler(AbstractAsyncContextManager):
class RemoteBIGSdbMLSTProfiler(BIGSdbMLSTProfiler):
def __init__(self, database_api: str, database_name: str, scheme_id: int, retry_requests: int = 5):
self._retry_limit = retry_requests
def __init__(self, database_api: str, database_name: str, scheme_id: int):
self._database_name = database_name
self._scheme_id = scheme_id
self._base_url = f"{database_api}/db/{self._database_name}/schemes/{self._scheme_id}/"
self._http_client = ClientSession(self._base_url, timeout=ClientTimeout(300))
self._http_client = ClientSession(self._base_url, timeout=ClientTimeout(60))
async def __aenter__(self):
return self
@ -58,59 +57,40 @@ class RemoteBIGSdbMLSTProfiler(BIGSdbMLSTProfiler):
uri_path = "sequence"
if isinstance(query_sequence_strings, str) or isinstance(query_sequence_strings, NamedString):
query_sequence_strings = [query_sequence_strings]
for sequence_string in query_sequence_strings:
attempts = 0
success = False
last_error = None
while not success and attempts < self._retry_limit:
attempts += 1
request = self._http_client.post(uri_path, json={
"sequence": sequence_string if isinstance(sequence_string, str) else sequence_string.sequence,
"partial_matches": True
})
try:
async with request as response:
sequence_response: dict = await response.json()
async with self._http_client.post(uri_path, json={
"sequence": sequence_string if isinstance(sequence_string, str) else sequence_string.sequence,
"partial_matches": True
}) as response:
sequence_response: dict = await response.json()
if "exact_matches" in sequence_response:
# loci -> list of alleles with id and loci
exact_matches: dict[str, Sequence[dict[str, str]]] = sequence_response["exact_matches"]
for allele_loci, alleles in exact_matches.items():
for allele in alleles:
alelle_id = allele["allele_id"]
result_allele = Allele(allele_locus=allele_loci, allele_variant=alelle_id, partial_match_profile=None)
yield result_allele if isinstance(sequence_string, str) else (sequence_string.name, result_allele)
elif "partial_matches" in sequence_response:
partial_matches: dict[str, dict[str, Union[str, float, int]]] = sequence_response["partial_matches"]
for allele_loci, partial_match in partial_matches.items():
if len(partial_match) <= 0:
continue
partial_match_profile = AlignmentStats(
percent_identity=float(partial_match["identity"]),
mismatches=int(partial_match["mismatches"]),
gaps=int(partial_match["gaps"]),
match_metric=int(partial_match["bitscore"])
)
result_allele = Allele(
allele_locus=allele_loci,
allele_variant=str(partial_match["allele"]),
partial_match_profile=partial_match_profile
)
yield result_allele if isinstance(sequence_string, str) else (sequence_string.name, result_allele)
else:
raise NoBIGSdbMatchesException(self._database_name, self._scheme_id, sequence_string.name if isinstance(sequence_string, NamedString) else None)
except (ConnectionError, ServerDisconnectedError, ClientOSError) as e: # Errors we will retry
last_error = e
success = False
await asyncio.sleep(5) # In case the connection issue is due to rate issues
if "exact_matches" in sequence_response:
# loci -> list of alleles with id and loci
exact_matches: dict[str, Sequence[dict[str, str]]] = sequence_response["exact_matches"]
for allele_loci, alleles in exact_matches.items():
for allele in alleles:
alelle_id = allele["allele_id"]
result_allele = Allele(allele_locus=allele_loci, allele_variant=alelle_id, partial_match_profile=None)
yield result_allele if isinstance(sequence_string, str) else (sequence_string.name, result_allele)
elif "partial_matches" in sequence_response:
partial_matches: dict[str, dict[str, Union[str, float, int]]] = sequence_response["partial_matches"]
for allele_loci, partial_match in partial_matches.items():
if len(partial_match) <= 0:
continue
partial_match_profile = AlignmentStats(
percent_identity=float(partial_match["identity"]),
mismatches=int(partial_match["mismatches"]),
gaps=int(partial_match["gaps"]),
match_metric=int(partial_match["bitscore"])
)
result_allele = Allele(
allele_locus=allele_loci,
allele_variant=str(partial_match["allele"]),
partial_match_profile=partial_match_profile
)
yield result_allele if isinstance(sequence_string, str) else (sequence_string.name, result_allele)
else:
success = True
if not success and last_error is not None:
try:
raise last_error
except (ConnectionError, ServerDisconnectedError, ClientOSError) as e: # Non-fatal errors
yield Allele("error", "error", None)
raise NoBIGSdbMatchesException(self._database_name, self._scheme_id, sequence_string.name if isinstance(sequence_string, NamedString) else None)
async def determine_mlst_st(self, alleles: Union[AsyncIterable[Union[Allele, tuple[str, Allele]]], Iterable[Union[Allele, tuple[str, Allele]]]]) -> Union[MLSTProfile, NamedMLSTProfile]:
uri_path = "designations"
@ -133,43 +113,23 @@ class RemoteBIGSdbMLSTProfiler(BIGSdbMLSTProfiler):
request_json = {
"designations": allele_request_dict
}
async with self._http_client.post(uri_path, json=request_json) as response:
response_json: dict = await response.json()
allele_set: Set[Allele] = set()
response_json.setdefault("fields", dict())
scheme_fields_returned: dict[str, str] = response_json["fields"]
scheme_fields_returned.setdefault("ST", "unknown")
scheme_fields_returned.setdefault("clonal_complex", "unknown")
scheme_exact_matches: dict = response_json["exact_matches"]
for exact_match_locus, exact_match_alleles in scheme_exact_matches.items():
allele_set.add(Allele(exact_match_locus, exact_match_alleles[0]["allele_id"], None))
if len(allele_set) == 0:
raise ValueError("Passed in no alleles.")
result_mlst_profile = MLSTProfile(allele_set, scheme_fields_returned["ST"], scheme_fields_returned["clonal_complex"])
if len(names_list) > 0:
result_mlst_profile = NamedMLSTProfile(str(tuple(names_list)) if len(set(names_list)) > 1 else names_list[0], result_mlst_profile)
return result_mlst_profile
attempts = 0
success = False
last_error = None
while attempts < self._retry_limit and not success:
attempts += 1
try:
async with self._http_client.post(uri_path, json=request_json) as response:
response_json: dict = await response.json()
allele_set: Set[Allele] = set()
response_json.setdefault("fields", dict())
scheme_fields_returned: dict[str, str] = response_json["fields"]
scheme_fields_returned.setdefault("ST", "unknown")
scheme_fields_returned.setdefault("clonal_complex", "unknown")
scheme_exact_matches: dict = response_json["exact_matches"]
for exact_match_locus, exact_match_alleles in scheme_exact_matches.items():
allele_set.add(Allele(exact_match_locus, exact_match_alleles[0]["allele_id"], None))
if len(allele_set) == 0:
raise ValueError("Passed in no alleles.")
result_mlst_profile = MLSTProfile(allele_set, scheme_fields_returned["ST"], scheme_fields_returned["clonal_complex"])
if len(names_list) > 0:
result_mlst_profile = NamedMLSTProfile(str(tuple(names_list)) if len(set(names_list)) > 1 else names_list[0], result_mlst_profile)
return result_mlst_profile
except (ConnectionError, ServerDisconnectedError, ClientOSError) as e:
last_error = e
success = False
await asyncio.sleep(5)
else:
success = True
try:
if last_error is not None:
raise last_error
except (ConnectionError, ServerDisconnectedError, ClientOSError) as e:
result_mlst_profile = NamedMLSTProfile((str(tuple(names_list)) if len(set(names_list)) > 1 else names_list[0]) + ":Error", None)
raise ValueError("Last error was not recorded.")
async def profile_string(self, query_sequence_strings: Iterable[Union[NamedString, str]]) -> Union[NamedMLSTProfile, MLSTProfile]:
alleles = self.determine_mlst_allele_variants(query_sequence_strings)
return await self.determine_mlst_st(alleles)
@ -251,16 +211,6 @@ class BIGSdbIndex(AbstractAsyncContextManager):
async def build_profiler_from_seqdefdb(self, local: bool, dbseqdef_name: str, scheme_id: int) -> BIGSdbMLSTProfiler:
return get_BIGSdb_MLST_profiler(local, await self.get_bigsdb_api_from_seqdefdb(dbseqdef_name), dbseqdef_name, scheme_id)
async def get_scheme_loci(self, dbseqdef_name: str, scheme_id: int) -> list[str]:
uri_path = f"{await self.get_bigsdb_api_from_seqdefdb(dbseqdef_name)}/db/{dbseqdef_name}/schemes/{scheme_id}"
async with self._http_client.get(uri_path) as response:
response_json = await response.json()
loci = response_json["loci"]
results = []
for locus in loci:
results.append(path.basename(locus))
return results
async def close(self):
await self._http_client.close()

View File

@ -1,7 +1,7 @@
from collections import defaultdict
import csv
from os import PathLike
from typing import AsyncIterable, Collection, Iterable, Mapping, Sequence, Union
from typing import AsyncIterable, Collection, Mapping, Sequence, Union
from autobigs.engine.structures.mlst import Allele, MLSTProfile, NamedMLSTProfile
@ -17,7 +17,7 @@ def alleles_to_text_map(alleles: Collection[Allele]) -> Mapping[str, Union[Seque
result[locus] = tuple(result[locus]) # type: ignore
return dict(result)
async def write_mlst_profiles_as_csv(mlst_profiles_iterable: AsyncIterable[NamedMLSTProfile], handle: Union[str, bytes, PathLike[str], PathLike[bytes]], allele_names: Iterable[str]) -> Sequence[str]:
async def write_mlst_profiles_as_csv(mlst_profiles_iterable: AsyncIterable[NamedMLSTProfile], handle: Union[str, bytes, PathLike[str], PathLike[bytes]]) -> Sequence[str]:
failed = list()
with open(handle, "w", newline='') as filehandle:
header = None
@ -30,7 +30,7 @@ async def write_mlst_profiles_as_csv(mlst_profiles_iterable: AsyncIterable[Named
continue
allele_mapping = alleles_to_text_map(mlst_profile.alleles)
if writer is None:
header = ["id", "st", "clonal-complex", *sorted(allele_names)]
header = ["id", "st", "clonal-complex", *sorted(allele_mapping.keys())]
writer = csv.DictWriter(filehandle, fieldnames=header)
writer.writeheader()
row_dictionary = {

View File

@ -222,12 +222,3 @@ class TestBIGSdbIndex:
assert isinstance(profile, MLSTProfile)
assert profile.clonal_complex == "ST-2 complex"
assert profile.sequence_type == "1"
@pytest.mark.parametrize(["bigsdb_name", "scheme_id", "expected"], [
("pubmlst_bordetella_seqdef", 3, ["adk", "fumC", "glyA", "tyrB", "icd", "pepA", "pgm"])
])
async def test_bigsdb_index_fetches_loci_names(self, bigsdb_name, scheme_id, expected):
async with BIGSdbIndex() as bigsdb_index:
loci = await bigsdb_index.get_scheme_loci(bigsdb_name, scheme_id)
assert set(loci) == set(expected)

View File

@ -27,7 +27,7 @@ async def test_column_order_is_same_as_expected_file(dummy_alphabet_mlst_profile
dummy_profiles = [dummy_alphabet_mlst_profile]
with tempfile.TemporaryDirectory() as temp_dir:
output_path = path.join(temp_dir, "out.csv")
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path, ["A", "D", "B", "C"])
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path)
with open(output_path) as csv_handle:
csv_reader = reader(csv_handle)
lines = list(csv_reader)
@ -38,7 +38,7 @@ async def test_csv_writing_sample_name_not_repeated_when_single_sequence(dummy_a
dummy_profiles = [dummy_alphabet_mlst_profile]
with tempfile.TemporaryDirectory() as temp_dir:
output_path = path.join(temp_dir, "out.csv")
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path, ["A", "D", "B", "C"])
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path)
with open(output_path) as csv_handle:
csv_reader = reader(csv_handle)
lines = list(csv_reader)
@ -63,7 +63,7 @@ async def test_csv_writing_includes_asterisk_for_non_exact(dummy_alphabet_mlst_p
dummy_profiles = [dummy_alphabet_mlst_profile]
with tempfile.TemporaryDirectory() as temp_dir:
output_path = path.join(temp_dir, "out.csv")
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path, ["A", "D", "B", "C"])
await write_mlst_profiles_as_csv(iterable_to_asynciterable(dummy_profiles), output_path)
with open(output_path) as csv_handle:
csv_reader = reader(csv_handle)
lines = list(csv_reader)