
CSC373 Assignment 4 Submission

Harrison Deng

April 8, 2024

Q1 [15 Points] Set Cover

Here is the Set-Cover problem. You are given a set E = {e1, ..., en}, and m subsets S1, ..., Sm ⊆ E.
For each j ∈ [m], we associate a weight wj ≥ 0 to the set Sj . The goal is to find a minimum-weight
collection of subsets that covers all of E.

(a) [5 Points] Form the set-cover problem as an integer linear program, and then relax it to a linear
program. Define your variables. [Hint: you might want to have a constraint like

∑
j:ei∈Sj

xj ≥ 1

for each element ei.]

(b) [5 Points] Let x∗ denote the optimal solution to the relaxed LP you defined in part (a). Let
f be the maximum number of subsets in which any element appears. Here’s the rounding algorithm:
given x∗, we include Sj if and only if x∗j ≥ 1/f . Let I = {j : Sj is selected by the rounding algorithm}.
Prove that the collection of subsets Sj where j ∈ I chosen by the rounding algorithm is a set cover.

(c) [5 Points] Let OPT be value of the optimal solution of the set-cover. Prove that the rounding
algorithm in (b) gives an f -approximation.

1

Q2 [15 Points] Traveling Salesman

Here’s the metric traveling salesman problem. You are given a complete graph G = (V,E), where
V = {1, ..., n} represents the cities the salesman needs to visit. For each edge (i, j) ∈ E, we as-
sociate it with a cost cij . We call it “metric” because for every triplet of vertices i, j, k ∈ V , it
respects the triangle inequality, i.e. cik ≤ cij + cjk. The goal is to have a tour of the cities (i.e.
a Hamiltonian cycle of G) such that each city is visited exactly once (except for the starting city
where you have to come back to), and the total cost is minimized.

Here is our approximation algorithm, which is also a greedy algorithm: Among all pairs of cities,
find the two closest cities, say i and j, and start by building a tour on that pair of cities; the tour
consists of going from i to j and then back to i again. This is the first iteration. In each subsequent
iteration, we extend the tour on the current subset S ⊆ V by including one additional city, until we
include the full set of cities. Specifically in each iteration, we find a pair of cities i ∈ S and j /∈ S
for which the cost cij is minimum; let k be the city that follows i in the current tour on S. We add
j to S, and replace the path i → k with i → j and j → k. See the picture below for illustration:

Let OPT be the value of the optimal solution of the metric traveling salesman problem. Prove that
the approximation algorithm above gives a 2-approximation.

Solution

Variables and Assumptions: To begin, we will define our variables and state our assumptions,
let G = (E, V) be the complete graph where V represents the spatial nodes to be visited and E
be a series of edges that connect all vertices with each other. Each edge is assigned a weight cij
for the corresponding vertices i and j. Furthermore, we will assume that the triangle inequality
holds for all triangles formed by all edges. In other words, ∀i, j, k ∈ V, cik ≤ cij + cjk essentially
stating that for any given vertices i, j, k, the direct edge from i to k is never worse than the
sequence of edges from i to j, to k. Let GRD be the given greedy algorithm and Sg = Eg, Vg be the
graph representation of the sequence of vertices and edges to take as the solution (traversal graph)
produced by such an algorithm. We let function c(S) be the sum of all edge weights for traversing
all vertices of a graph S. Lastly, we will assume OPT is the cost of a optimal solution to traveling
salesman problem (TSP) where such a traversal graph is So = (Eo, Vo). Our objective is to show
that, Sg is at worst, c(Sg) ≤ 2× OPT.

Prim’s Minimum Spanning Tree Algorithm Review: Very briefly, the Prim’s minimum
spanning tree (MST) algorithm begins by arbitrarily selecting a vertex from a graph, and iteratively
selecting the next vertex with the lowest edge weight connecting to the current set of selected
vertices.

2

Claim 1: To begin, notice that c(So) is a cycle that traverses all vertices minimally and cyclically
where each node is traversed exactly once with the exception of the starting node. Then, see that
c(So) may be trivially converted into a tree graph by simply removing any edge in So and arbitrarily
selecting a vertex to become the root of the tree. Such a tree is spanning (all vertices connected).
Furthermore, see that the traversal of such a tree costs will not cost more than the traversal of the
original cycle So. In other words, ∀e ∈ Eo, c(So − {e}) ≤ c(So).

Claim 2: See that the greedy traversal graph Sg will always result in requiring half of the number
of edges to traverse all nodes via connected edges when compared to traversing a MST. To see this,
we assert that GRD produces a traversal graph Sg that is no different from a graph produced by
Prim’s MST algorithm Sp = (Ep, Vp) from G, after running a depth first search (DFS) on Sp, and
removing the duplicates, connecting edges that traversed to the duplicate vertices directly to the
subsequent vertex after the removed vertex.

This is because GRD is substantially different only in the step of adding the selected vertex to
the current graph. Where in Prim’s, the algorithm selects the vertex s ∈ G associated with the
lowest weighted edge that connects to a vertex i in the partial solution Spp = (Epp, Vpp) and
proceeding to the next iteration, GRD selects the next vertex and edge in the same fashion, however,
instead of moving to the next iteration, GRD connects the selected node, s ∈ G, to the next node
i was linked to k ∈ Spp. In other words, where Prim’s may resolve to connect i → s such that
Epp = {. . . , {i, k}, {i, s}, . . .}, and a traversal by DFS results in a sequence . . . → i → k → i →
s → GRD resolves the newly selected vertex such that the partial traversal graph for GRD is
Sgp = (Egp, Vgp) where Egp = {. . . , {i, s}, {s, k}, . . .}, effectively changing i → k to i → s → k thus
maintaining the chain form of the graph.

We can then see that Prim + DFS does create double the edges than GRD, since the DFS traversal
. . . → i → k → i → s → . . . can be simplified into . . . → i → k → s → . . . (removing the second
appearance of i in the sequence) without worsening the total weight required for the traversal by
the triangle inequality (TI) assumption. To prove this, we may focus on k → i → s, and see that
cks ≤ cki + cis (TI assumption).

From this, we can see that Prim’s algorithm is known to generate a MST, and to traverse such a
tree one vertex after another is double the cost of the cyclical traversal path provided by GRD. In
other words, we have proven 2c(Sp) = (c(Sg)) or c(Sp) =

1
2(c(Sg)).

Proof Algorithm is 2-Approximation:

c(Sp) ≤ c(So − {e}) (Prim’s is MST therefore, costs ≤ other spanning trees.) (1)

1

2
c(Sg) ≤ c(So − {e}) (Claim 2 substitution) (2)

1

2
c(Sg) ≤ c(So − {e}) ≤ c(So) (Claim 1) (3)

c(Sg) ≤ 2c(So) (4)

Where Sg is the solution produced by GRD, and So is the optimal solution. Hence, we’ve shown
that the described GRD algorithm will always result in a solution no worse than twice the optimal
solution, i.e., 2-approximation.

3

Q3 [20 Points] Randomized Algorithms

Let G = (V,E) be an undirected graph. For any subset of vertices U ⊆ V , define

cut(U) = {(u, v) ∈ E : u ∈ U and v /∈ U}.

The set cut(U) is called the cut determined by the vertex set U . The size of the cut is denoted by
|cut(U)|. The Max-Cut problem asks you to find the cut with maximum size, i.e., maxU⊆V |cut(U)|.

Here is a randomized algorithm for Max-Cut: Take a uniform random subset U of V , and choose
cut(U) to be the cut. Let OPT be the size of the maximum cut in G. Prove that the randomized
algorithm gives a cut of expected size at least half of the optimal solution, i.e., E[|cut(U)|] ≥ 1

2OPT.

4

Q4 [5 Points] Extra Credit

“Here is the link for EC3, you should submit this with HW4 (not HW3).” — Harry

https://colab.research.google.com/drive/1Mo8S-asikkd4qBakMldCwlsDHcpyzEmo?usp=sharing

References

Please write down your references here, including any paper or online resources you consult.

5

https://colab.research.google.com/drive/1Mo8S-asikkd4qBakMldCwlsDHcpyzEmo?usp=sharing

