
CSC373 Assignment 4 Submission

Harrison Deng

April 8, 2024

Q1 [15 Points] Set Cover

Here is the Set-Cover problem. You are given a set E = {e1, ..., en}, and m subsets S1, ..., Sm ⊆ E.
For each j ∈ [m], we associate a weight wj ≥ 0 to the set Sj . The goal is to find a minimum-weight
collection of subsets that covers all of E.

(a) [5 Points] Form the set-cover problem as an integer linear program, and then relax it to a linear
program. Define your variables. [Hint: you might want to have a constraint like

∑
j:ei∈Sj

xj ≥ 1

for each element ei.]

(b) [5 Points] Let x∗ denote the optimal solution to the relaxed LP you defined in part (a). Let
f be the maximum number of subsets in which any element appears. Here’s the rounding algorithm:
given x∗, we include Sj if and only if x∗j ≥ 1/f . Let I = {j : Sj is selected by the rounding algorithm}.
Prove that the collection of subsets Sj where j ∈ I chosen by the rounding algorithm is a set cover.

(c) [5 Points] Let OPT be value of the optimal solution of the set-cover. Prove that the rounding
algorithm in (b) gives an f -approximation.

1

Q2 [15 Points] Traveling Salesman

Here’s the metric traveling salesman problem. You are given a complete graph G = (V,E), where
V = {1, ..., n} represents the cities the salesman needs to visit. For each edge (i, j) ∈ E, we as-
sociate it with a cost cij . We call it “metric” because for every triplet of vertices i, j, k ∈ V , it
respects the triangle inequality, i.e. cik ≤ cij + cjk. The goal is to have a tour of the cities (i.e.
a Hamiltonian cycle of G) such that each city is visited exactly once (except for the starting city
where you have to come back to), and the total cost is minimized.

Here is our approximation algorithm, which is also a greedy algorithm: Among all pairs of cities,
find the two closest cities, say i and j, and start by building a tour on that pair of cities; the tour
consists of going from i to j and then back to i again. This is the first iteration. In each subsequent
iteration, we extend the tour on the current subset S ⊆ V by including one additional city, until we
include the full set of cities. Specifically in each iteration, we find a pair of cities i ∈ S and j /∈ S
for which the cost cij is minimum; let k be the city that follows i in the current tour on S. We add
j to S, and replace the path i → k with i → j and j → k. See the picture below for illustration:

Let OPT be the value of the optimal solution of the metric traveling salesman problem. Prove that
the approximation algorithm above gives a 2-approximation.

Solution

Variables and Assumptions: To begin, we will define our variables and state our assumptions,
let G = (E, V) be the complete graph where V represents the spatial nodes to be visited and E be
a series of edges that connect all vertices with each other. Each edge is assigned a weight cij for
the corresponding vertices i and j. Furthermore, we will assume that the triangle inequality holds
for all triangles formed by all edges. In other words, ∀i, j, k ∈ V, cik ≤ cij + cjk essentially stating
that for any given vertices i, j, k, the direct edge from i to k is never worse than the sequence of
edges from i to j, to k. Let GRD be the described greedy algorithm given in the question. We let
function c(S) be the sum of all edge weights for traversing all vertices of a graph S. Lastly, we will
assume OPT the cost of the a optimal solution to traveling salesman problem (TSP). Our objective
is to show that, given Sg solution generated by GRD Sg is at worst, c(Sg) ≤ 2× OPT.

Claim 1: To begin, notice that the c(So) such that c(So) = OPT, is a cycle that traverses all vertices
minimally and cyclically where each node is traversed exactly once with the exception of the starting
node. Then, see that c(So) may be trivially converted into a tree graph by simply removing any
edge in So and arbitrarily selecting a vertex to become the root of the tree. Furthermore, see that
the traversal of such a tree costs will not cost more than the traversal of the original cycle So. In
other words, So = (Eo, Vo),∀e ∈ Eo, c(So − {e}) ≤ c(So).

2

Prim’s Minimum Spanning Tree Algorithm Review: Very briefly,the Prim’s minimum span-
ning tree (MST) algorithm begins by arbitrarily selecting a vertex from a graph, and iteratively
selecting the next vertex with the lowest edge weight connecting to the current set of selected
vertices.

Claim 2: See that the cycle graph Se = (Ee, Ve) generated by GRD will always result in requiring
half of the edges to traverse all nodes via connected edges when compared to traversing a MST.
To see this, we assert that GRD produces a traversal graph (vertices representing nodes and edges
representing the edge taken to reach each vertex) Sg = (Eg, Vg) that is no different from a graph
produced by Prim’s MST algorithm Sp = (Ep, Vp) from G, after running a depth first search (DFS)
on Sp, and removing the duplicates, connecting edges that traversed to the duplicate vertices
directly to the subsequent vertex after the removed vertex.

This is because GRD is substantially different only in the step of adding the selected vertex to the
current graph. Where in Prim’s, the algorithm selects the vertex s ∈ G associated with the lowest
weighted edge that connects to a vertex i in the partial solution Spp = (Epp, Vpp) and proceeding to
the next iteration, GRD selects the next vertex and edge identically, however, instead of moving to
the next iteration, GRD connects s ∈ G to the next node i is linked to k ∈ Spp. In other words, where
Prim’s may resolve to connect i ⇄ s such that Epp = {. . . , {i, k}, {i, s}, . . .}, and a traversal by
DFS results in a sequence . . . → i → k → i → s → GRD resolves the newly selected vertex such
that Epp = {. . . , {i, s}, {s, k}, . . .}, effectively changing i ⇄ k to i ⇄ s ⇄ k where the traversal
is trivially . . . → i → s → k → . . . thus maintaining the chain form of the graph. From this
breakdown, we can see that the Prim’s approach requires double the edges for the full traversal in
contrast against the GRD algorithm.

However, to see that the methods are analogous and thus, comparable, the DFS traversal . . . →
i → k → i → s → . . . can be simplified into i → k → s (removing the second appearance of i in the
sequence) without worsening the total weight required for the traversal by the triangle inequality
(TI) assumption. To prove this, we may focus on k → i → s, and see that cks ≤ cki + cis (TI
assumption).

From this, we can see that Prim’s algorithm is known to generate a MST, and to traverse such a
tree in it’s entirety is double the cost of the cyclical traversal path provided by GRD. In other words,
we have proven 2c(Sp) = (c(Sg)) or c(Sp) =

1
2(c(Sg)).

Proof of 2-Approximation:

c(Sp) ≤ c(So − {e}) (Prim’s Algorithm generates MST) (1)

1

2
c(Sg) ≤ c(So − {e}) (Claim 2) (2)

1

2
c(Sg) ≤ c(So − {e}) ≤ c(So) (Claim 1) (3)

c(Sg) ≤ 2c(So) (4)

Where Sg is the solution produced by GRD, and So is the optimal solution. Hence, we’ve shown
that the described GRD algorithm will always result in a solution no worse than twice the optimal
solution, i.e., 2-approximation.

3

Q3 [20 Points] Randomized Algorithms

Let G = (V,E) be an undirected graph. For any subset of vertices U ⊆ V , define

cut(U) = {(u, v) ∈ E : u ∈ U and v /∈ U}.

The set cut(U) is called the cut determined by the vertex set U . The size of the cut is denoted by
|cut(U)|. The Max-Cut problem asks you to find the cut with maximum size, i.e., maxU⊆V |cut(U)|.

Here is a randomized algorithm for Max-Cut: Take a uniform random subset U of V , and choose
cut(U) to be the cut. Let OPT be the size of the maximum cut in G. Prove that the randomized
algorithm gives a cut of expected size at least half of the optimal solution, i.e., E[|cut(U)|] ≥ 1

2OPT.

4

Q4 [5 Points] Extra Credit

“Here is the link for EC3, you should submit this with HW4 (not HW3).” — Harry

https://colab.research.google.com/drive/1Mo8S-asikkd4qBakMldCwlsDHcpyzEmo?usp=sharing

References

Please write down your references here, including any paper or online resources you consult.

5

https://colab.research.google.com/drive/1Mo8S-asikkd4qBakMldCwlsDHcpyzEmo?usp=sharing

